

Doc. Number :

SIGNATURE

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: G121S1 SUFFIX: L02 (Rev.C6)

Customer:

APPROVED BY

<u>Name / Title</u> Note

Please return 1 copy for your confirmation with your signature and comments.

Approved By	Checked By	Prepared By
lvan.hsu	Sen.lin	Miyabi.ko

- CONTEN	- CONTENTS -					
REVISION HISTORY	3					
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4					
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 LED CONVERTER	6					
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	8					
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	11					
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT						
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 6.3 THE INPUT DATA FORMAT 6.4 SCANNING DIRECTION	16					
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS						
8. RELIABILITY TEST CRITERIA	25					
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD 9.3 UN-PACKING METHOD	26					
10. DEFINITION OF LABELS	28					
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS	29					
12. MECHANICAL CHARACTERISTICS	30					

Version 2.6

Nov 29, 2018

2/31

REVISION HISTORY

Version	Date	Section	Description
2.0	Jan. 11, 2010	All	G121S1-L02 Approval Spec. was first issued.
2.1	Aug. 26, 2010	3.2	Append remark of "Operating LED under high temperature environment will reduce life time and lead to color shift. " in Note (2).
2.2	Nov. 18, 2010	1.5 9.2	Modify Weight (Typ.) and Weight (Max.) Update Figure 9-1 Packing method, as an additional diagram of protect film/ tape, and delete (3) Weight.
2.3	May. 02, 2013	3.2 9.3	Modify LED PWM frequency max value from 200Hz to 20KHz. Add un-packing method.
2.4	Apr. 29, 2014	1.4	Modify Haze value from 25% to 22%.
2.5	Jul.01,2016 Nov.29,2018	1.4 2.1 3.1 3.2 6.1 7.1 8 12 2.1	Modify Module Power Consumption value from 13.52W to 9.1W Add Note (5) Add Max Value of "Power Supply Current" and "Power Consumption " Modify "Converter Power Supply Current" value 1A to 0.54A Modify "Converter Power Consumption" value 12W to 6.48W Modify ILED value 80mADC to 60mADC" Add Note (3) Add Note (3) Modify test condition Add Note(5) and Note (6) Update 2D Drawing. Modify the description of Note(1).
		3.1 3.2 5.1 6.2	Add Ripple Voltage& Rush Current Add Logic High/Low Input Voltage. Modify LVDS common input Voltage Add Note (4) Modify the description of Note(2) Modify the description 3&5 Add Note (4) Modify the description of Note(1)~(7)

Nov 29, 2018

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The G121S1-L02 model is a 12.1" TFT-LCD IAV module with a white LED Backlight Unit and a 20-pin 1ch-LVDS interface. This module supports 800 x 600 SVGA MVA mode and displays 262K/ 16.2M colors. The converter for the LED Backlight Unit is built in.

1.2 FEATURES

- Wide viewing angle
- High contrast ratio
- SVGA (800 x 600 pixels) resolution
- Wide operating temperature
- DE (Data Enable) mode
- LVDS (Low Voltage Differential Signaling) interface
- Reversible-scan direction
- RoHS Compliance
- LED Light Bar Replaceable

1.3 APPLICATION

- TFT LCD Monitor
- Industrial Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	12.1	inch	
Active Area	246.00(H) x 184.50(V)	mm	(1)
Bezel Opening Area	249.00(H) x 187.50(V)	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	800 x R.G.B. x 600	pixel	-
Pixel Pitch	0.3075(H) x 0.3075(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262K/ 16.2M	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 22%)	-	-
Module Power Consumption	9.1	W	(3),Тур.

Version 2.6Nov 29, 20184/31The copyright belongs to INNOLUX. Any unauthorized use is prohibited.

1.5 MECHANICAL SPECIFICATIONS

lt	em	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	260.0	260.5	261.0	mm	
Module Size	Vertical (V)	203.5	204.0	204.5	mm	(1)
	Depth (D)	7.9	8.4	8.9	mm	
We	eight		506	530	g	-
I/F connector n	nounting position	The mounting ir the screen cente	-	(2)		

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

(3) The Module Power Consumption is specified at 3.3V, white pattern and 100% duty for LED backlight.

2. ABSOLUTE MAXIMUM RATINGS

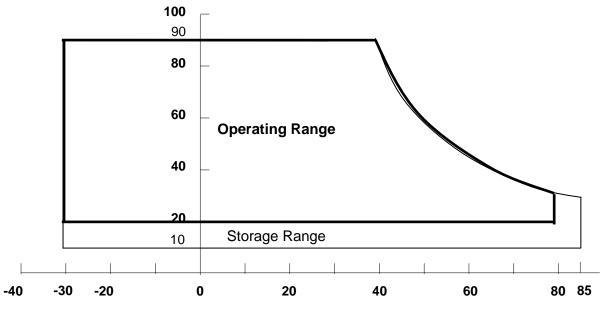
2.1 ABSOLUTE RATINGS OF ENVIRONMENT

ltom	Symbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Unit	NOLE	
Operating Ambient Temperature	T _{OP}	-30	+80	٥C	(1),(2)	
Storage Temperature	T _{ST}	-30	+85	٥C	(1),(2)	

Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta \leq 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta >40 °C).


(c) No condensation.

(2) The absolute maximum rating values of this product are not allowed to be exceeded at any times.

The module should not be used over the absolute maximum rating value. It will cause

Permanently unrecoverable function fail in such an condition

Temperature (°C)

Nov 29, 2018

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Val	ue	Unit	Note
nem	Symbol	Min.	Max.	Unit	NOLE
Power Supply Voltage	VCC	-0.3	7	V	(1)

2.2.2 LED CONVERTER

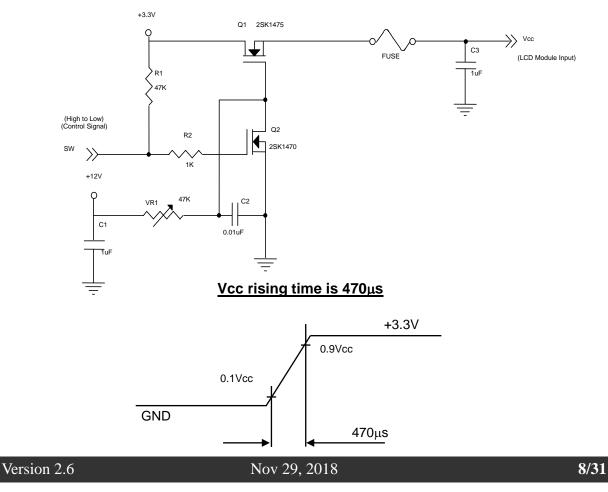
Item	Symbol	Va	lue	Unit	Note
nem	Symbol	Min.	Max.	Unit	NOLE
Converter Voltage	Vi	-0.3	18	V	(1) , (2)
Enable Voltage	EN		5.5	V	
Backlight Adjust	ADJ		5.5	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Version 2.6

Nov 29, 2018

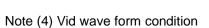

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

1 TFT LCD MODULE							Ta = 25 ± 2 °C	
Parameter		Symbol	Value			Unit	Note	
Falailletei		Symbol	Min.	Тур.	Max.	Unit	Note	
Power Supply Voltage		VCC	3.0	3.3	3.6	V	at VCC=3.3V	
Fower Supply voltage		VCC	4.75	5.0	5.25	V	at VCC=5.0V	
Ripple Voltage		V_{RP}	-	-	100	mVp-p		
Rush Current		I _{RUSH}	-	-	1.5	А	(2), at VCC=5.0V	
	White			460	560	mA	(3)a, at VCC=3.3V, 60Hz	
Bower Supply Current	vvnite			310	390	mA	(3)a, at VCC=5.0V, 60Hz	
Power Supply Current	Black			420	510	mA	(3)b, at VCC=3.3V, 60Hz	
	DIACK			280	350	mA	(3)b, at VCC=5.0V, 60Hz	
Logic High Input Voltage)	VIH	2.3	-	2.7	V	Logic High Input Voltage	
Logic Low Input Voltage		VIL	0	-	0.7	V	Logic Low Input Voltage	
Power Consumption		PL		1.52	1.85	W	VCC=3.3V, 60Hz, White Pattern	
LVDS differential input voltage		VID	100		600	mV	(4)-	
LVDS common input vol	tage	VICM	1.0	1.2	1.4	V	-	

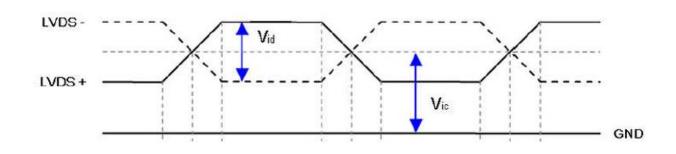
Note (1) The module is recommended to operate within specification ranges listed above for normal function.

Note (2) Measurement Conditions:



Note (3) The specified power supply current is under the conditions at Ta = $25 \pm 2 \, {}^{\circ}C$, $f_v = 60 \, \text{Hz}$, whereas a power dissipation check pattern below is displayed.

a. White Pattern

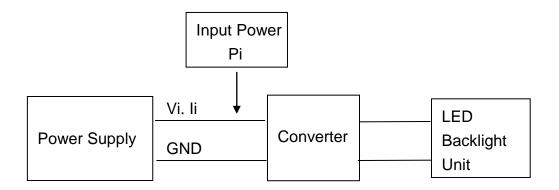

Active Area

Active Area

3.2 LED CONVERTER

Ta = 25 ± 2 °C

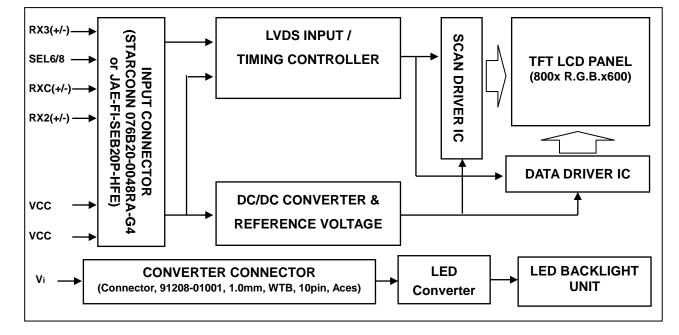
Deremet	Symbol	Value			Unit	Noto	
Paramet	Parameter			Тур.	Max.	Unit	Note
Converter Power Supply	/oltage	Vi	10.8	12.0	13.2	V	(Duty 100%)
Converter Power Supply (Current	li		0.54		Α	@ Vi = 12V (Duty 100%)
Converter Power Consum	Pi		6.48		W	@ Vi = 12V (Duty 100%)	
EN Control Level	Backlight on		2.0	3.3	5.0	V	
	Backlight off		0		0.8	V	
PWM Control Level	PWM High Level		2.0	3.3	5.0	V	
	PWM Low Level		0		0.15	V	
PWM Control Duty Ratio			1		100	%	@200Hz
PWM Control Frequency	f _{PWM}	190	200	20K	Hz	(3)	
LED Life Time		L	50,000			Hrs	(2)


Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under

the conditions at $Ta = 25 \pm 2$ °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value.

Operating LED under high temperature environment will reduce life time and lead to color shift.


Note (3) At 20k Hz PWM control frequency , duty ratio range is restricted from 20% to 100%.

4. BLOCK DIAGRAM

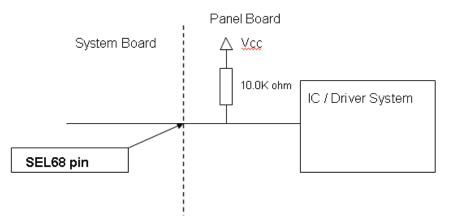
4.1 TFT LCD MODULE

Version 2.6

Nov 29, 2018

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE


Pin	Name	Description	Remark
1	RX3+	Differential Data Input, CH3 (Positive)	
2	RX3-	Differential Data Input, CH3 (Negative)	
3	NC	Not connection or Ground	
4	SEL68	LVDS 6/8 bit select function control, Low or NC \rightarrow 6 bit Input Mode High \rightarrow 8bit Input Mode	Note (3)
5	NC	Not connection or Ground	
6	RXC+	Differential Clock Input (Positive)	LVDS Level Clock
7	RXC-	Differential Clock Input (Negative)	
8	GND	Ground	
9	RX2+	Differential Data Input, CH2 (Positive)	
10	RX2-	Differential Data Input, CH2 (Negative)	
11	GND	Ground	
12	RX1+	Differential Data Input, CH1 (Positive)	
13	RX1-	Differential Data Input, CH1 (Negative)	
14	GND	Ground	
15	RX0+	Differential Data Input, CH0 (Positive)	
16	RX0-	Differential Data Input, CH0 (Negative)	
17	reLR	Horizontal Reverse Scan Control, Low or NC \rightarrow Normal Mode. High \rightarrow Horizontal Reverse Scan	Note (3)
18	reUD	Vertical Reverse Scan Control, Low or NC \rightarrow Normal Mode, High \rightarrow Vertical Reverse Scan	Note (3)
19	VCC	Power supply	
20	VCC	Power supply	

Note (1) Connector Part No.: FI-SEB20P-HFE(JAE) or 076B20-0048RA-G4(STARCONN) or equivalent.

Note (2) User's connector Part No.: FI-SE20ME(JAE) or equivalent

Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected".

Note (4) When 6 bit input mode, Pin27(Rxin3-) and Pin28(Rxin3+) should be set to ground.

Version 2.6

Nov 29, 2018

5.2 LED CONVERTER

Pin	Symbol	Description	Remark
1	Vi	Converter input voltage	12V
2	Vi	Converter input voltage	12V
3	Vi	Converter input voltage	12V
4	Vi	Converter input voltage	12V
5	V _{GND}	Converter ground	Ground
6	V_{GND}	Converter ground	Ground
7	V_{GND}	Converter ground	Ground
8	V_{GND}	Converter ground	Ground
9	EN	Enable pin	3.3V
10			PWM Dimming
	ADJ	Backlight Adjust	(190-20KHz, Hi: 3.3V _{DC} ,
			Lo: 0V _{DC})

Note (1) Connector Part No.: 91208-01001-H01(ACES) or equivalent

Note (2) User's connector Part No.: 91209-01011(ACES) or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

1		Data Signal																	
	Color			Re						Gre						Bl			
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
ļ	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ļ	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ļ	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ļ	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Nov 29, 2018

INNOLUX 群創光電

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												۵	Data	ı Siç	gnal										
	Color		1		R	ed		1	1		1		G	reen	1		1		I		BI	ue		1	
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
Basic Colors	Black Red Green Blue Cyan Magenta Yellow White	0 1 0 0 1 1	0 1 0 0 1 1 1	0 1 0 0 1 1 1	0 1 0 0 1 1 1	0 1 0 0 1 1 1	0 1 0 0 1 1	0 1 0 0 1 1 1	0 1 0 0 1 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 1 0 1	0 0 1 1 1 0	0 0 1 1 1 0	0 0 1 1 1 0	0 0 1 1 1 0	0 0 1 1 1 0	0 0 1 1 0 1	0 0 1 1 1 0 1
Gray Scale Of Red	Red(0) / Dark Red(1) Red(2) : Red(253) Red(254) Red(255)	0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 0 1 : 0 1	0 1 : : 1 0 1	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : 0 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0	0 0 : : 0 0
Gray Scale Of Green	Green(0)/ Dark Green(1) Green(2) : Green(253) Green(254) Green(255)	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0 0	0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 0 : : 1 1	0 0 : 1 1	0 0 1 : 0 1	0 1 : : 1 0 1	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0 0	0 0 : : 0 0 0	0 0 : : 0 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0 0
Gray Scale Of Blue	Blue(0) / Dark Blue(1) Blue(2) : Blue(253) Blue(254) Blue(255)	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : : 0 0 0	0 0 : : 0 0	0 0 : : 0 0 0	0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 0 : : 1 1	0 0 : : 1 1	0 0 1 : 0 1	0 1 0 : 1 0 1

Note: 0: Low Level Voltage, 1: High Level Voltage

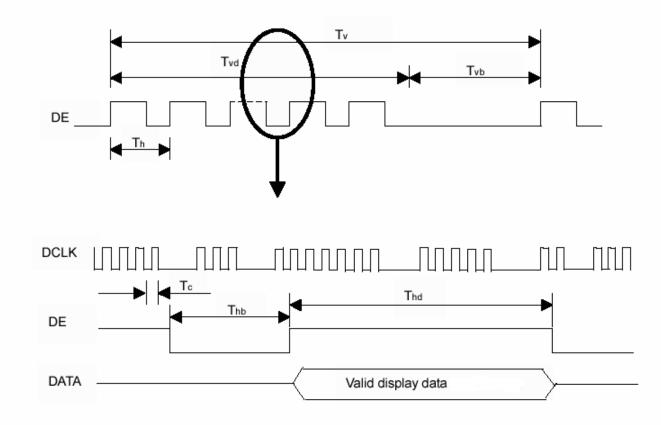
Nov 29, 2018

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	Fc	34	40	48.3	MHz	
	Total	Τv	610	628	800	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd		600		Th	
	Blank	Tvb	Tv-Tvd	28	Tv-Tvd	Th	
	Total	Th	960	1056	1150	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd		800		Tc	
	Blank	Thb	Th-Thd	256	Th-Thd	Tc	

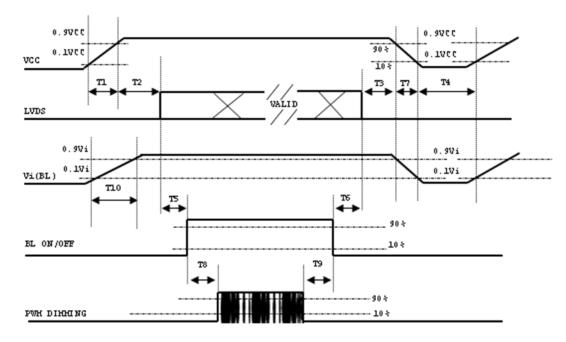

Note : (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set

to low logic level or ground. Otherwise, this module would operate abnormally.

(2) Frame rate is 60Hz

(3) The Tv(Tvd+Tvb) must be integer, otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM


Version 2.6

Nov 29, 2018

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF sequence

Note:

(1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.

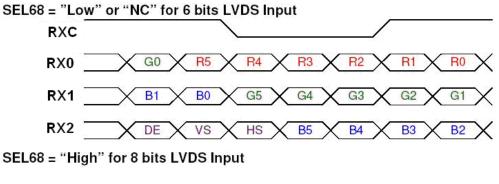
(2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.

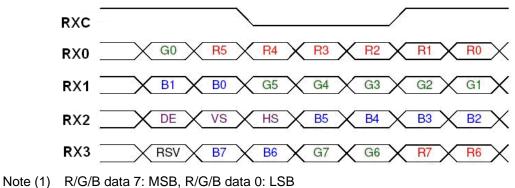
(3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.

(4) T4 should be measured after the module has been fully discharged between power off and on period.

(5) Interface signal shall not be kept at high impedance when the power is on.

(6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.


(7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec".


Nov 29, 2018

Doromotor		Units				
Parameter	Min	Тур	Max	Units		
T1	0.5	-	10	ms		
T2	0	-	50	ms		
Т3	0	-	50	ms		
T4	500	-	-	ms		
T5	450	-	-	ms		
Т6	200	-	-	ms		
T7	10	-	100	ms		
Т8	10	-	-	ms		
Т9	10	-	-	ms		
T10	20	-	50	ms		

6.3 The INPUT DATA FORMAT

Note (2) Please follow PSWG

Nov 29, 2018

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-	6	
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

Note (3) Output signals from any system shall be low or Hi-Z state when VCC is off

6.4 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

Fig.3 Reverse Scan

INNOLUX CORPORATION

Version 2.6

Nov 29, 2018

- Fig. 1 Normal scan (pin 17, reLR = Low or NC, pin 18, reUD = Low or NC)
- Fig. 2 Reverse scan (pin 17, reLR = High, pin 18, reUD = Low or NC)
- Fig. 3 Reverse scan (pin 17, reLR = Low or NC, pin 18, reUD = High)
- Fig. 4 Reverse scan (pin 17, reLR = High, pin 18, reUD = High)

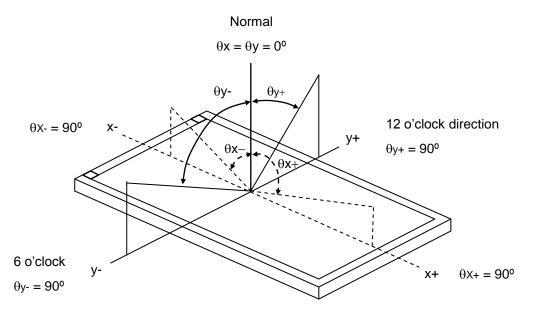
Version 2.6

Nov 29, 2018

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit						
Ambient Temperature	Та	25±2	°C						
Ambient Humidity	Ha	50±10	%RH						
Supply Voltage		ł							
Input Signal	According to typical value in "ELECTRICAL CHARACTERISTICS"								
LED Light Bar Input Current Per Input Pin									


7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2 and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

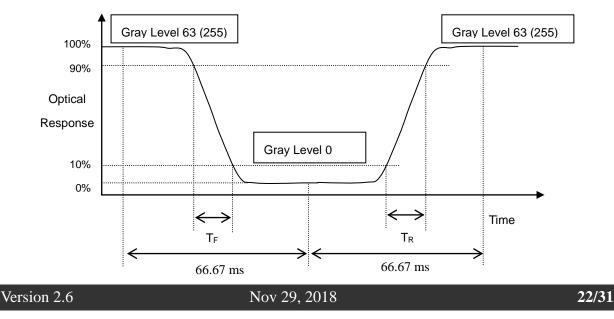
Iten	ı	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			0.600		-		
Color	Red	Ry			0.353		-		
	Croop	Gx			0.348		-		
	Green	Gy		Тур -	0.568	Тур +	•	(1) (E)	
Chromaticity	Dhuo	Bx	θ _x =0°, θ _Y =0°	0.05	0.150	0.05	•	(1), (5)	
	Blue	Ву	CS-2000		0.097		-		
	White	Wx			0.313		-		
		Wy			0.329		-		
Center Luminan	Center Luminance of White			500	600	-	-	(4), (5)	
Contrast Ratio		CR		1200	1500	-	-	(2), (5)	
Deenenee Time		T _R		-	13	18	ms	(2)	
Response Time		T _F	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	12	17	ms	(3)	
White Variation		δW	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	1.25	1.4	•	(5), (6)	
	Horizontol	θ_x +		80	89	-			
Viewing Angle	Horizontal	θ x -		80	89	-	Dea	(1) (E)	
	Vertical	θγ +	CR≥10	80	89	-	Deg.	(1), (5)	
	Vertical	θ γ-		80	89	-			

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio, CR:

The contrast ratio can be calculated by the following expression.

Contrast Ratio, CR = L63 (255) / L0


L63: Luminance of gray level 63 (255)

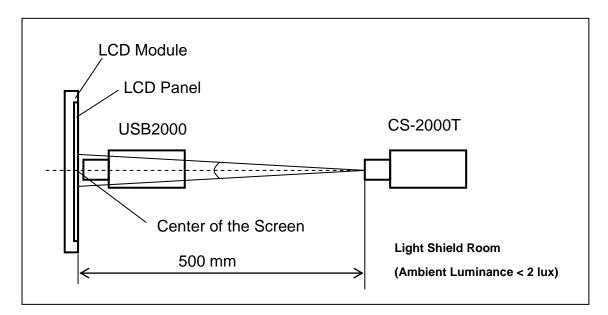
L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) and measurement method:

Note (4) Definition of Luminance of White, L_C:

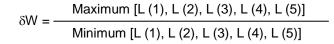

Measure the luminance of gray level 63 (255) at center point

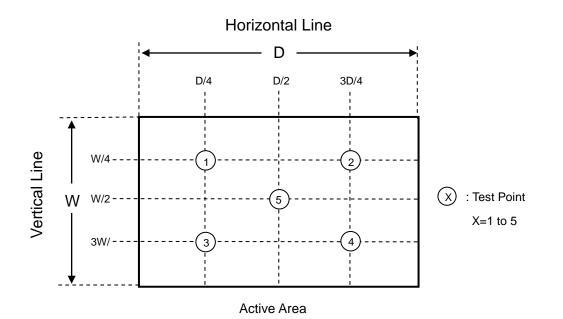
 $L_{C} = L(5)$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.




Nov 29, 2018

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 (255) at 5 points

Version 2.6

Nov 29, 2018

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	85ºC, 240 hours	
Low Temperature Storage Test	-30ºC, 240 hours	
Thermal Shock Storage Test	-30⁰C, 0.5hour ←→85°C, 0.5hour; 1hour/cycle,100cycles	(1)(2) (4)(5)
High Temperature Operation Test	80ºC, 240 hours	(-)(0)
Low Temperature Operation Test	-30ºC, 240 hours	
High Temperature & High Humidity Operation Test	60ºC, 90%RH, 240hours	(1)(2) (4)(6)
Shock (Non-Operating)	200G, 2ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.	(2)(3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(2)(3)

Note (1) There should be no condensation on the surface of panel during test.

Note (2) Temperature of panel display surface area should be 85 °C Max.

- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 16pcs LCD modules / 1 Box
- (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately 15Kg (16 modules per box)

9.2 PACKING METHOD

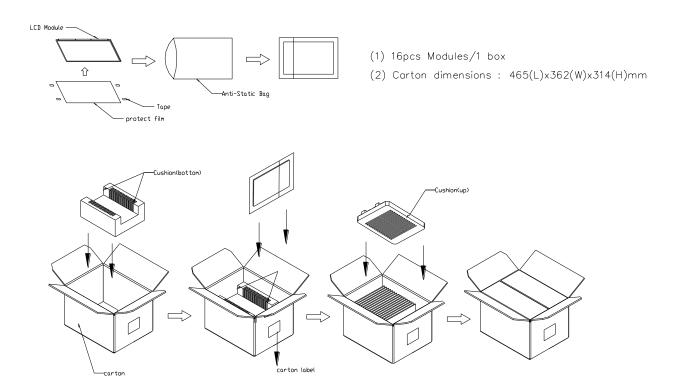
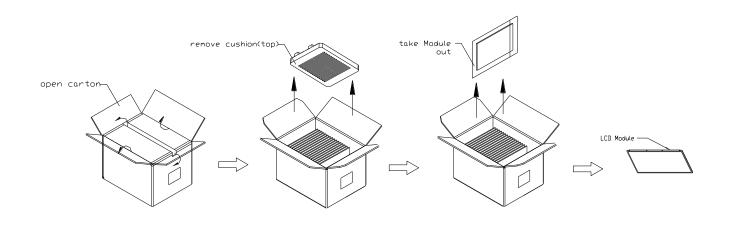
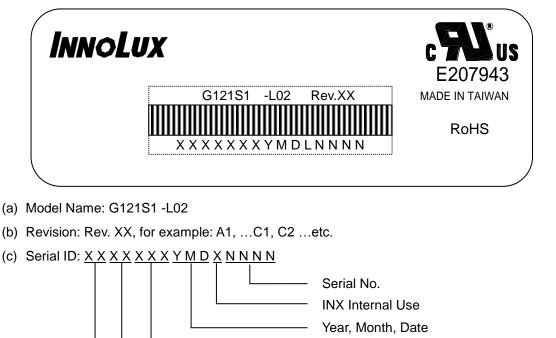


Figure. 9-1 Packing method


Nov 29, 2018

Sea / Land Transportation (40ft Container) Air Transportation PE Sheet PE Sheet Corner Protector (50*50*800mm) PP Belt t Corner Protector (50*50*800mm) PP Belt Corner Protector (50*50*1170mm) Corner Protector (50*50*1780mm) Film Film Pallet 1100x970x135 mm Pallet 1100x970x135 mm -Carton Label Carton Label

9.3 UN-PACKING METHOD


Nov 29, 2018

10. DEFINITION OF LABELS

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Manufactured Date: Year: 1~9, for 2011~2019

Serial ID includes the information as below:

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1^{st} to 31^{st} , exclude I , O and U

INX Internal Use

INX Internal Use

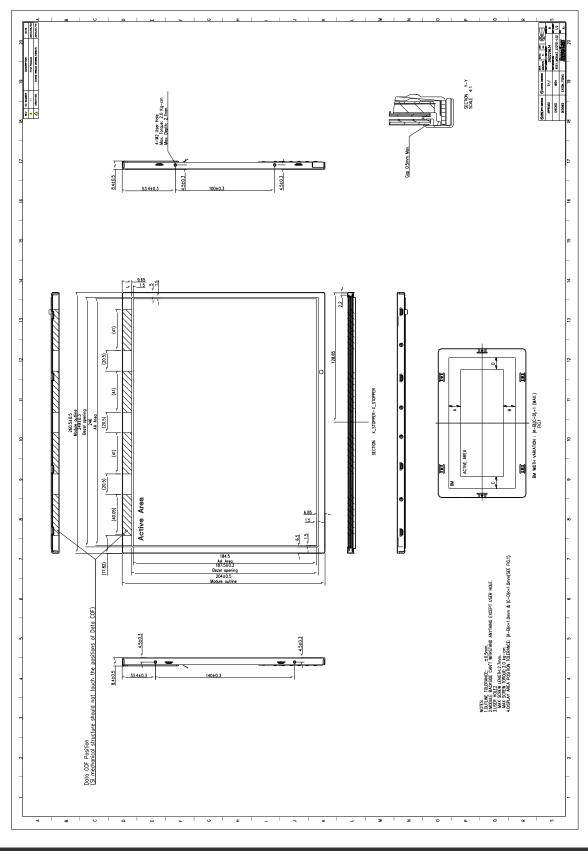
Revision

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

11. PRECAUTIONS

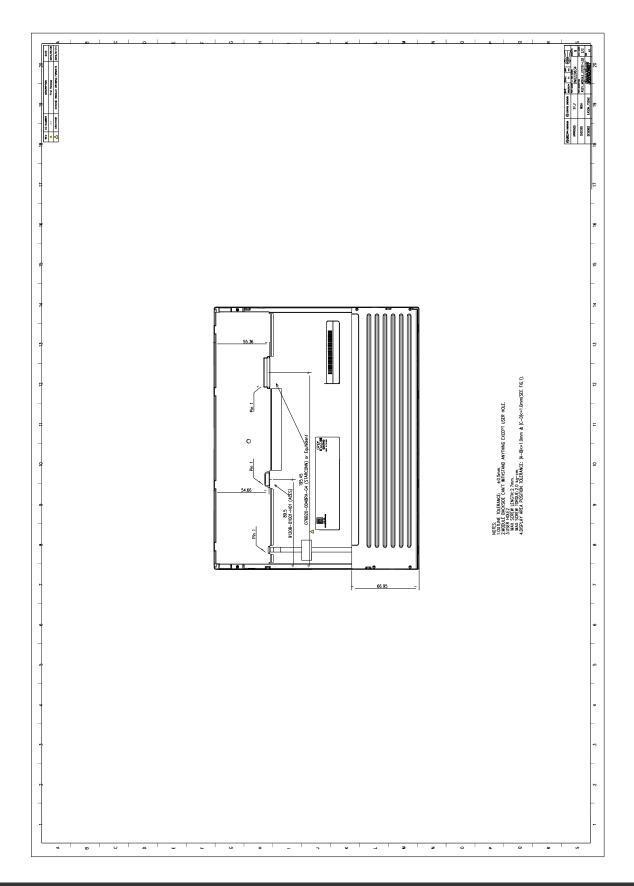
11.1 ASSEMBLY AND HANDLING PRECAUTIONS


- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality, the response time will become slowly.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

11.2 SAFETY PRECAUTIONS

- (1) Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

12. MECHANICAL CHARACTERISTICS



Nov 29, 2018

PRODUCT SPECIFICATION

Nov 29, 2018