

Doc. Number :

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: N156HCA SUFFIX: EA1

Customer:							
APPROVED BY	SIGNATURE						
Name / Title Note							
Please return 1 copy for yo signature and comments.	our confirmation with your						

Approved By	Checked By	Prepared By
陳立錚	林秋森	許秝茵

PRODUCT SPECIFICATION

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	5
2.1 CONNECTOR TYPE	5
3. ABSOLUTE MAXIMUM RATINGS	-
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	
3.2.1 TFT LCD MODULE	6
4. ELECTRICAL SPECIFICATIONS	
4.1 FUNCTION BLOCK DIAGRAM	7
4.2. INTERFACE CONNECTIONS	
4.3 ELECTRICAL CHARACTERISTICS	-
4.3.1 LCD ELETRONICS SPECIFICATION	
4.3.2 LED CONVERTER SPECIFICATION	
4.3.3 BACKLIGHT UNIT	
4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS	
4.4.1 ELECTRICAL SPECIFICATIONS	
4.4.2 COLOR DATA INPUT ASSIGNMENT	
4.5 DISPLAY TIMING SPECIFICATIONS	
5. OPTICAL CHARACTERISTICS	
5.1 TEST CONDITIONS	
5.2 OPTICAL SPECIFICATIONS	
6. RELIABILITY TEST ITEM	
7. PACKING	
7.1 MODULE LABEL	
7.2 CARTON	
7.3 PALLET	
7.4 UN-PACK METHOD	
8. PRECAUTIONS	
8.1 HANDLING PRECAUTIONS	
8.2 STORAGE PRECAUTIONS	
8.3 OPERATION PRECAUTIONS	
Appendix. EDID DATA STRUCTURE	
Appendix. OUTLINE DRAWING	35

16 March 2018

Appendix. SYSTEM COVER DESIGN GUIDANCE	37
Appendix. LCD MODULE HANDLING MANUAL	45

PRODUCT SPECIFICATION

REVISION HISTORY

Version	Date	Page	Description
2.0	March.16,2018	ALL	Spec Ver.2.0 was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N156HCA-EA1 is a 15.6" (15.6" diagonal) TFT Liquid Crystal Display NB module with LED Backlight unit and 30 pins eDP interface. This module supports 1920 x 1080 FHD AAS mode and can display 262,144 colors

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	15.6 diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.17925 (H) x 0.17925 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally Black	-	-
Surface Treatment	Hard coating (3H), Anti-Glare	-	-
Luminance, White	300	Cd/m2	
Color Gamut	72%	NTSC	
Power Consumption	Total 4.598 W (Max.) @ cell 0.858 W (Max.), BL 3.74 W (Max.)		(1)

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS = 3.3

V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = 25 ± 2 °C, whereas mosaic pattern is displayed.

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note	
Mashula	Horizontal (H)	349.86	350.16	350.46	mm		
Module Size	Vertical (V)	215.50	216.00	216.50	mm	(1)(2)	
OIZe	Thickness (T)	-	3.05	3.20	mm		
Active Area	Horizontal	-	344.16	-	mm		
Active Area	Vertical	-	193.59	-	mm		
We	eight	-	354	365	g		

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Dimensions are measured by caliper.

2.1 CONNECTOR TYPE

Please refer appendix outline drawing for detail design.

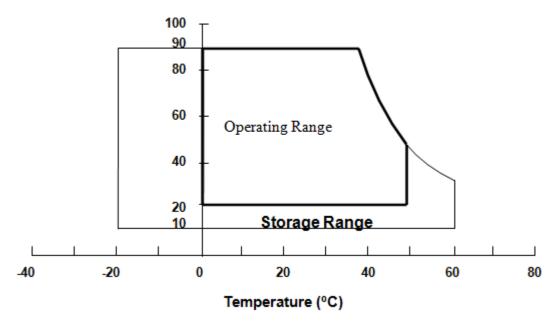
Connector Part No.: IPEX-20455-030E-12

User's connector Part No: IPEX-20453-030T-03

```
Version 2.0
```


3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT


ltom	Sumbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Unit		
Storage Temperature	TST	-20	+60	°C	(1)(2)	
Operating Ambient Temperature	TOP	0	+50	°C	(1)(2)	

Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta \leq 40 °C).

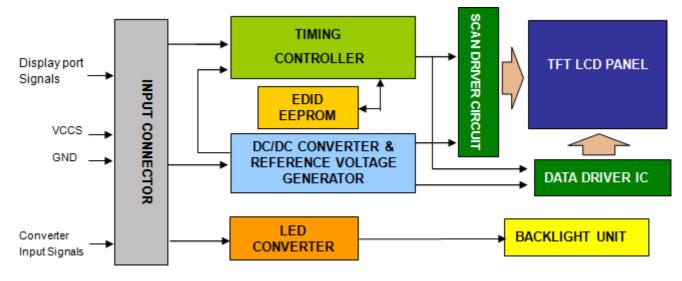
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note(2) The absolute maximum rating values of this product are not allowed to be exceeded at any times. The module should not be used over the absolute maximum rating value. It will causepermanently unrecoverable function fail in such an condition

Relative Humidity (%RH)

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

ltem	Symbol	Va	lue	Unit	Note	
	Cymbol	Min.	Max.	onic	Note	
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)	
Logic Input Voltage	VIN	-0.3	VCCS+0.3	V	(1)	
Converter Input Voltage	LED_VCCS	-0.3	26	V	(1)	
Converter Control Signal Voltage	LED_PWM,	-0.3	5	V	(1)	
Converter Control Signal Voltage	LED_EN	-0.3	5	V	(1)	


16 March 2018

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

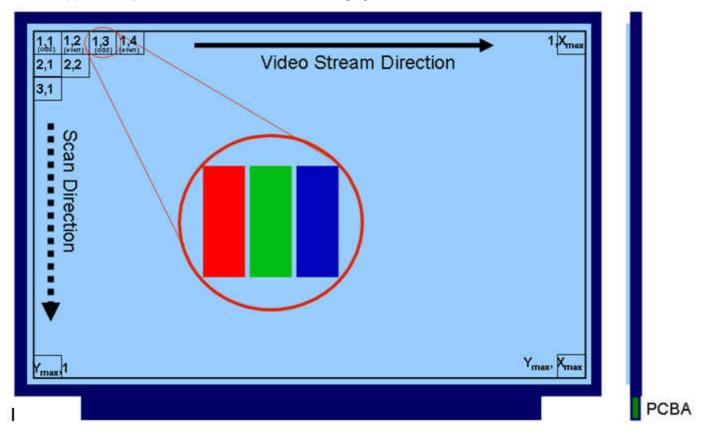
4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	NC	No Connection (Reserved for LCD test)	
2	H_GND	High Speed Ground	
3	ML1-	Complement Signal-Lane 1	
4	ML1+	True Signal-Main Lane 1	
5	H_GND	High Speed Ground	
6	ML0-	Complement Signal-Lane 0	
7	ML0+	True Signal-Main Lane 0	
8	H_GND	High Speed Ground	
9	AUX+	True Signal-Auxiliary Channel	
10	AUX-	Complement Signal-Auxiliary Channel	
11	H_GND	High Speed Ground	
12	VCCS	Power Supply +3.3 V (typical)	
13	VCCS	Power Supply +3.3 V (typical)	
14	NC	No Connection (Reserved for LCD test)	
15	GND	Ground	
16	GND	Ground	
17	HPD	Hot Plug Detect	
18	BL_GND	BL Ground	
19	BL_GND	BL Ground	
20	BL_GND	BL Ground	
21	BL_GND	BL Ground	


Version 2.0

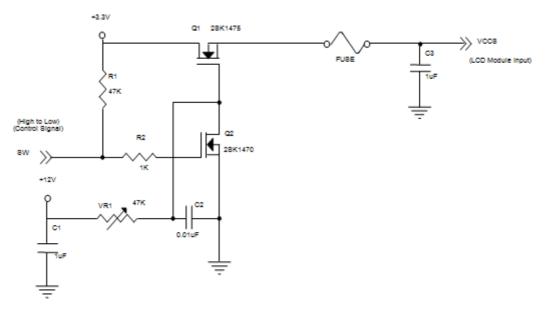
16 March 2018

22	LED_EN	BL_Enable Signal of LED Converter	
23	LED_PWM	PWM Dimming Control Signal of LED Converter	
24	NC	No Connection (Reserved for LCD test)	
25	NC	No Connection (Reserved for LCD test)	
26	LED_VCCS	BL Power	
27	LED_VCCS	BL Power	
28	LED_VCCS	BL Power	
29	LED_VCCS	BL Power	
30	NC	No Connection (Reserved for INNOLUX test)	

Note (1)The first pixel is odd as shown in the following figure.

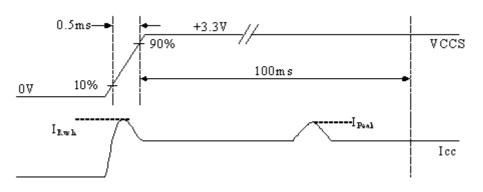
4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

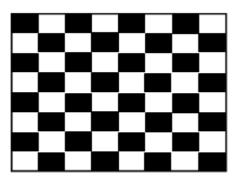

Parameter		Sumbol	Value			Lloit	Note
Paramete	÷1	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply	Voltage	VCCS	3.0	3.3	3.6	V	(1)
Ripple Volta	age	V _{RP}	-	50	-	mV	(1)
Inrush Curr	Inrush Current		-	-	1.5	А	(1),(2)
Peak Curre	ent	I _{Peak}			1.5	А	(1),(2)
Dower Supply Current	Mosaic			230	260	mA	(3)a
Power Supply Current	Black			210	240	mA	(3)
High Le			2.25	-	2.75	V	(5)
HPD	Low Level		0	-	0.4	V	(5)
HPD Impedance		R _{HPD}	30K			ohm	(4)

Note (1) The ambient temperature is $Ta = 25 \pm 2 \ ^{\circ}C$.

Note (2) I_{RUSH} : the maximum current when VCCS is rising


 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.



VCCS rising time is 0.5ms

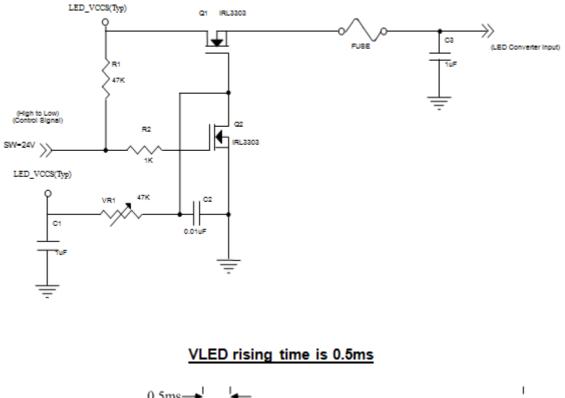
Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

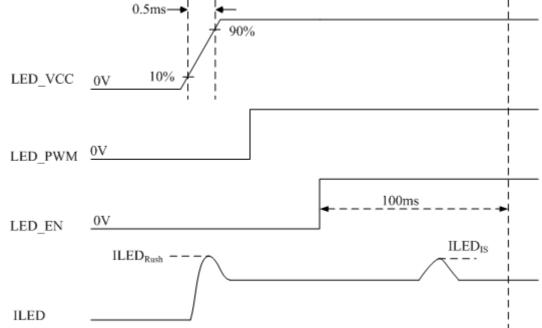
a. Mosaic Pattern

Active Area

- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information.
- Note (5) When a source detects a low-going HPD pulse, it must be regarded as a HPD event. Thus, the source must read the link / sink status field or receiver capability field of the DPCD and take corrective action.

4.3.2 LED CONVERTER SPECIFICATION


Parar	meter	Symbol		Value		Unit	Note
Faiai		Symbol	Min.	Тур.	Max.	Unit	11010
Converter Input Por	wer Supply Voltage	LED_Vccs	5.0	12.0	21.0	V	
Converter In	rush Current	ILEDRUSH	-	-	1.5	А	(1)
LED_EN Control	Backlight On		2.2	-	5.0	V	(4)
Level	Backlight Off		0	-	0.6	V	(4)
LED_EN Impedance		RLED_EN	30K	-	-	ohm	(4)
PWM Control Level	PWM High Level		2.2	-	5	V	(4)
	PWM Low Level		0	-	0.6	V	(4)
PWM Im	pedance	RPWM	30K	-	-	ohm	(4)
PWM Contro	ol Duty Ratio		5	-	100	%	(5)
PWM Control Duty Resolution			0.2	-	-	%	
PWM Control Permissive Ripple Voltage		VPWM_pp	-	-	100	mV	
PWM Control Frequency		fPWM	190	-	2K	Hz	(2)
LED Power Current	LED_VCCS =Typ.	ILED	241	297	312	mA	(3)


Note (1)ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.

Note (2) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

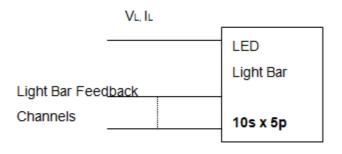

16 March 2018

PWM control frequency fPWM should be in the range

$$(N+0.33) * f \le f_{PWM} \le (N+0.66) * f$$

 N : Integer $(N \ge 3)$
 f : Frame rate

- Note (3) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 ± 2 °C, f_{PWM} = 200 Hz, Duty=100%.
- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. For example, the figure below describes the equivalent pull down impedance of LED_EN (If it exists). The rest pull down impedances of other signals (eg. HPD, PWM ...) are in the same concept.


Note (5) If the cycle-to-cycle difference of PWM duty exceeds 0.1%, especially when the PWM duty is low, slight brightness change might be observed.

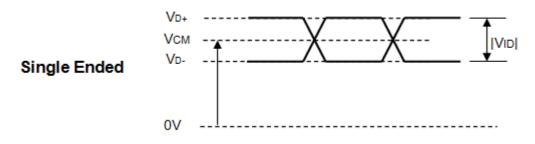
4.3.3 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Demonster	Ourseland		Value		1.1	Niete	
Parameter	Symbol	Min.	Typ. Max.		Unit	Note	
LED Light Bar Power Supply Voltage	VL	26	29	30	V	$(1)(2)(D_{1})(1)(0)(1)$	
LED Light Bar Power Supply Current	IL		102.5		mA	(1)(2)(Duty100%)	
Power Consumption	PL	2.66	2.97	3.075	W	(3)	
LED Life Time	LBL	15000	-	-	Hrs	(4)	

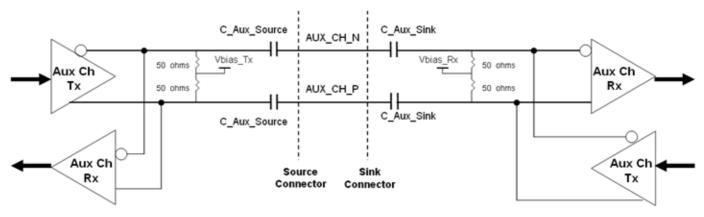
Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.


Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)

4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS

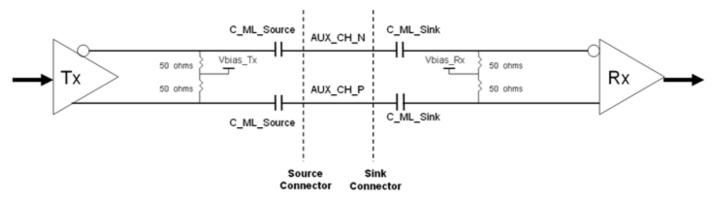
4.4.1 ELECTRICAL SPECIFICATIONS


Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1)(4)
AUX AC Coupling Capacitor	C_Aux_Source	75		200	nF	(2)
Main Link AC Coupling Capacitor	C_ML_Source	75		200	nF	(3)
DPCD Version (Address 00000h)	-		0x11h		-	(5)

Note (1)Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPortTM Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested, please contact us.

Note (2) Recommended eDP AUX Channel topology is as below and the AUX AC Coupling Capacitor

(C_Aux_Source) should be placed on the source device.



	Version	2.0
--	---------	-----

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 20.5 mA (Per EA) until the brightness becomes $\leq 50\%$ of its original value.

Note (3) Recommended Main Link Channel topology is as below and the Main Link AC Coupling Capacitor (C_ML_Source) should be placed on the source device.

Note(4) The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

4.4.2 COLOR DATA INPUT ASSIGNMENT

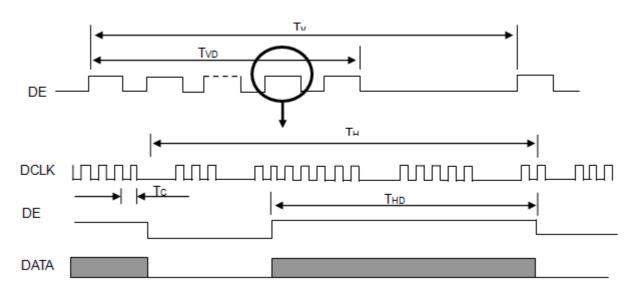
The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

									[Data	<u> </u>	al							
	Color			Re					Green				Blue						
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

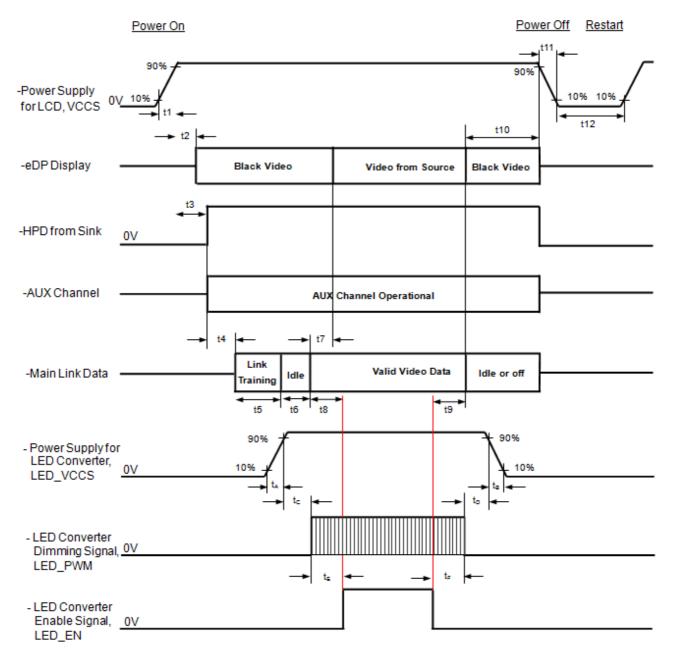
The input signal timing specifications are shown as the following table and timing diagram.


Refresh Rate 60Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	148.0	152.84	154.04	MHz	-
	Vertical Total Time	TV	1128	1132	1136	TH	-
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	52	TV-TVD	TH	-
Horizontal Total T	Horizontal Total Time	TH	2200	2250	2260	Tc	-
	Horizontal Active Display Period	THD	1920	1920	1920	Tc	-
	Horizontal Active Blanking Period	THB	TH-THD	330	TH-THD	Tc	-

Note (1) The panel can operate at 60Hz normal mode and power saving mode, respectively. All reliability

tests are based on specific timing of 60Hz refresh rate. We can only assure the panel's electrical function at power saving mode.


INPUT SIGNAL TIMING DIAGRAM

Note(2) The Input Signal must operate at eDP 2 lane.

4.6 POWER ON/OFF SEQUENCE

Timing Specifications

Parameter	Description	Reqd.		alue		Notes
1 drameter	-	Ву	Min	Max	Unit	
t1	Power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t2	Delay from LCD,VCCS to black video generation	Sink	0	200	ms	Automatic Black Video generation prevents display noise until valid video data is received from the Source (see Notes:2 and 3 below)
t3	Delay from LCD,VCCS to HPD high	Sink	0	200	ms	Sink AUX Channel must be operational upon HPD high (see Note:4 below)
t4	Delay from HPD high to link training initialization	Source	0	-	ms	Allows for Source to read Link capability and initialize
t5	Link training duration	Source	0	-	ms	Dependant on Source link training protocol
t6	Link idle	Source	0	-	ms	Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization
t7	Delay from valid video data from Source to video on display	Sink	0	50	ms	Max value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatic Black Video
t8	Delay from valid video data from Source to backlight on	Source	80	-	ms	Source must assure display video is stable *: Recommended by INX. To avoid garbage image.
t9	Delay from backlight off to end of valid video data	Source	50	-	ms	Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image.
t10	Delay from end of valid video data from Source to power off	Source	0	500	ms	Black video will be displayed after receiving idle or off signals from Source
t11	VCCS power rail fall time, 90% to 10%	Source	0.5	10	ms	-
t12	VCCS Power off time	Source	500	-	ms	-
tA	LED power rail rise time, 10% to 90%	Source	0.5	10	ms	-
tB	LED power rail fall time, 90% to 10%	Source	0	10	ms	-
tC	Delay from LED power rising to LED dimming signal	Source	1	-	ms	-
tD	Delay from LED dimming signal to LED power falling	Source	1	-	ms	-

16 March 2018

tE	Delay from LED dimming signal to LED enable signal	Source	0	-	ms	-
tF	Delay from LED enable signal to LED dimming signal	Source	0	-	ms	-

Note (1) Please don't plug or unplug the interface cable when system is turned on.

Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions:

- Upon LCDVCC power-on (within T2 max)

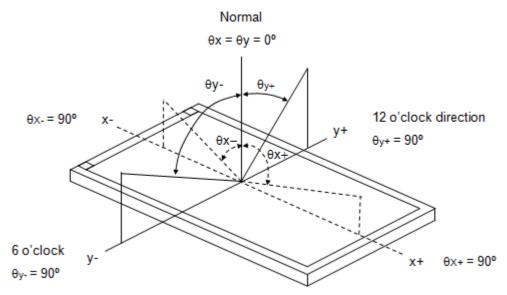
- When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)
- Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes.
- Note (4) The Sink must support AUX Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V _{cc}	3.3	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
LED Light Bar Input Current	١L	102.5	mA		

The measurement methods of optical characteristics are shown in Section 5.2. The following items should


be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

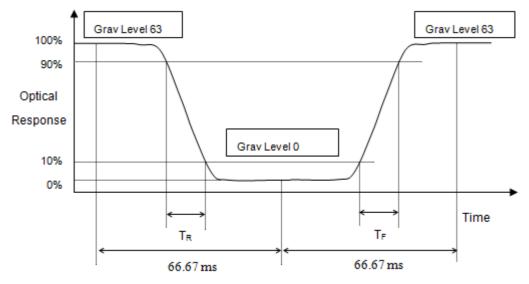
Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contras	Contrast Ratio			500	700	-	-	(2), (5),(7)
Response Time		T _R		-	14	19	ms	
Кезропа		T _F		-	11	16	ms	(3),(7)
Average Lumin	ance of White	Lave		255	300	-	cd/m ²	(4), (6),(7)
	Red				0.648		-	
Red	Reu	Ry	$\theta_x=0^\circ, \theta_Y=0^\circ$ Viewing Normal Angle		0.338		-	(1),(7)
	Green	Gx	viewing Normai Angle		0.313		-	
Color	Green	Gy		Тур –	0.600	Тур +	-	
Chromaticity	Blue	Bx		0.03	0.153	0.03	-	
	Diue	Ву			0.050		-	
	White	Wx			0.313		-	
		Wy			0.329		-	
Color g	amut	C.G		68	72		%	(8)
	Horizontal	θ_x +		80	89			
	HUHZUHIAI	θ _x -		80	89	-	Dee	(1),(5),
Viewing Angle) (a sti a a l	θ _Y +	CR≥10	80	89	-	Deg.	(7)
	Vertical	θγ-		80	89	-		
White Va	ariation	δW_{5p}	θ _x =0°, θ _Y =0°	80	-	-	%	(5),(6),
White Va		δW_{13p}	θ _x =0°, θ _Y =0°	65		-	%	(7)

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

L 0: Luminance of gray level 0

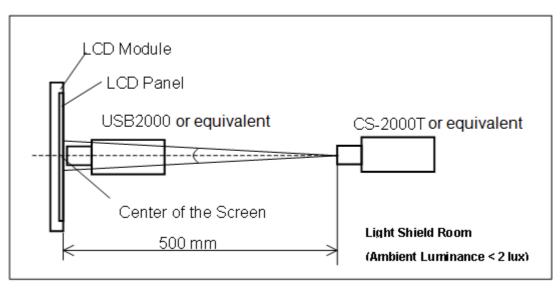
CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Definition of Average Luminance of White (LAVE):

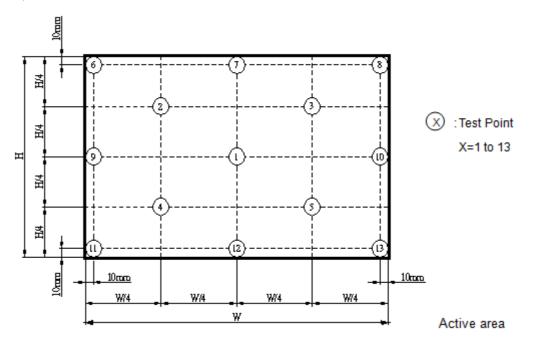
Measure the luminance of gray level 63 at 5 points


 $L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.



Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

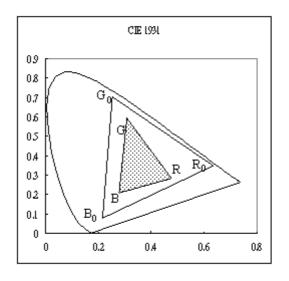
 $\delta W_{5p} = \{Minimum [L (1)~L (5)] / Maximum [L (1)~L (5)]\}*100\%$

 $\delta W_{13p} = \{Minimum [L (1)~L (13)] / Maximum [L (1)~L (13)]\}*100\%$

Version 2.0

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Note (8) Definition of color gamut (C.G%):


 $C.G\% = R G B / R_0 G_0 B_0,*100\%$

R₀, G₀, B₀: color coordinates of red, green, and blue defined by NTSC, respectively.

R, G, B: color coordinates of module on 63 gray levels of red, green, and blue, respectively.

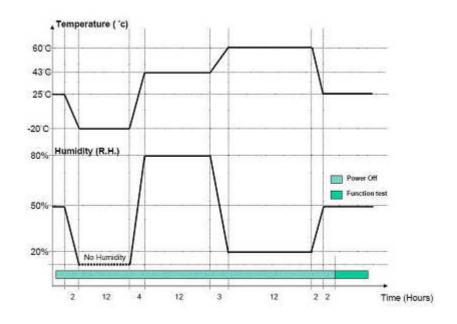
 $R_0 G_0 B_0$: area of triangle defined by R_0 , G_0 , B_0

RGB: area of triangle

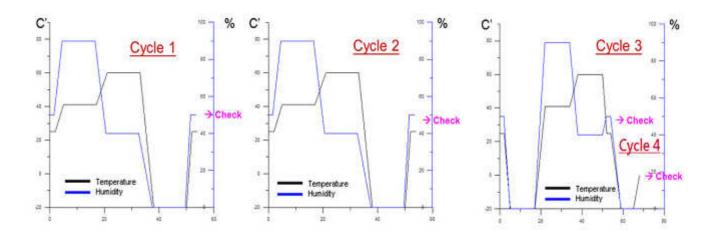
defined by R, G, B

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	60ºC, 240 hours	
Low Temperature Storage Test	-20ºC, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour $\leftarrow \rightarrow$ 60°C, 0.5hour; 100cycles, 1hour/cycle	(1)(2) (4)(5)
High Temperature Operation Test	50°C, 240 hours	(1)(0)
Low Temperature Operation Test	0ºC, 240 hours	
High Temperature & High Humidity Operation Test	50ºC, RH 80%, 240hours	(1)(2) (4)(6)
ESD Test (Operation)	150pF, 330Ω, 1sec/cycle Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±15KV	(1)(4)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of $\pm X, \pm Y, \pm Z$	(2)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(2)(3)


Note (1) There should be no condensation on the surface of panel during test.

Note (2) Temperature of panel display surface area should be 60 °C Max.


- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Profile(a):

Profile (b) :

7. PACKING

7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a)Model Name: N156HCA-EA1

(b)Revision: Rev. XX, for example: C1, C2 ... etc. for INX internal used

(c)Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	INX internal use	-
XX	Revision	Cover all the change
Х	INX internal use	-
XX	INX internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d)Production Location: MADE IN XXXX.

(e)UL Logo: XXXX is UL factory ID. (XXXXX is a blank or a minimum of 4 or 5 English characters, only for INX internal used)

(f)Right side barcode for customer used

7.2 CARTON

(1)Box Dimensions : 500(L)*370(W)*270(H) (2)20 Modules/Carton

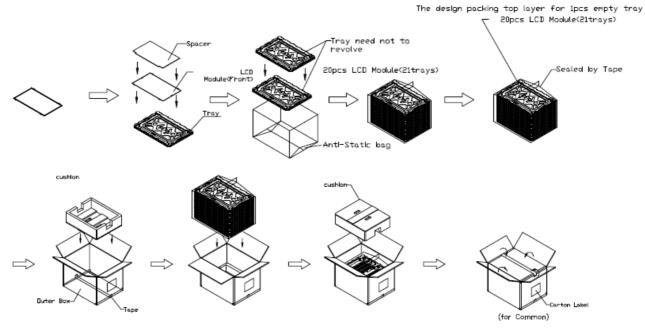
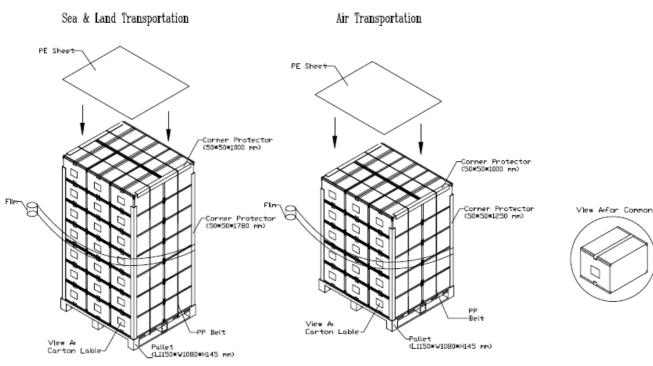
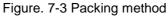




Figure. 7-2 Packing method

7.3 PALLET

PRODUCT SPECIFICATION

7.4 UN-PACK METHOD

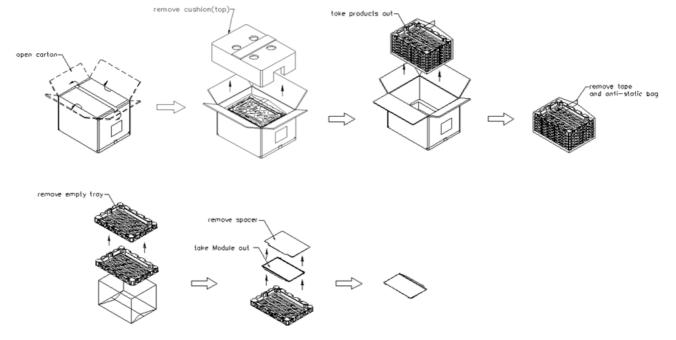


Figure. 7-4 Un-Packing method

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10)Do not pull or fold the LED wire.
- (11)Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.
- (4) system parts must non-NH4+ / Low NH4+ to prevent LCD occured white spot symptom.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMIS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.
- (4) IF system interfere with panel or twist panel while system operation. It may cause ripple or noise or other side effect. Please prevent such twist or interfere by system operation
- (5) P-cover tape will bulge without external force due to the material character of P-cover tape. The tolerance of P-cover tape thickness will not exceed 2 mm from surface of polarizer and thickness of PCBA side can be reformed to normal thickness by external force

Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

Byte # (decimal)	Byte # (hex)	Field Name and Comments	Value (hex)	Value (binary)
0	00	Header	00	00000000
1	01	Header	FF	11111111
2	02	Header	FF	11111111
3	03	Header	FF	11111111
4	04	Header	FF	11111111
5	05	Header	FF	11111111
6	06	Header	FF	11111111
7	07	Header	00	00000000
8	08	EISA ID manufacturer name ("CMN")	0D	00001101
9	09	EISA ID manufacturer name	AE	10101110
10	0A	ID product code (LSB)	D7	11010111
11	0B	ID product code (MSB)	15	00010101
12	0C	ID S/N (fixed "0")	00	00000000
13	0D	ID S/N (fixed "0")	00	00000000
14	0E	ID S/N (fixed "0")	00	00000000
15	0F	ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture ("37")	25	00100101
17	11	Year of manufacture ("2015")	19	00011001
18	12	EDID structure version ("1")	01	0000001
19	13	EDID revision ("4")	04	00000100
20	14	Video I/P definition ("Digital")	95	10010101
21	15	Active area horizontal ("34.416cm")	22	00100010
22	16	Active area vertical ("19.359cm")	13	00010011
23	17	Display Gamma (Gamma = "2.2")	78	01111000
24	18	Feature support ("RGB, Non-continous")	02	00000010
25	19	Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	26	00100110
26	1A	Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	75	01110101
27	1B	Rx=0.648	A6	10100110
28	1C	Ry=0.338	56	01010110
29	1D	Gx=0.313	50	01010000
30	1E	Gy=0.6	99	10011001
31	1F	Bx=0.153	27	00100111
32	20	By=0.05	0C	00001100
33	21	Wx=0.313	50	01010000
34	22	Wy=0.329	54	01010100
35	23	Established timings 1	00	00000000
36	24	Established timings 2	00	00000000
37	25	Manufacturer's reserved timings	00	00000000
38	26	Standard timing ID # 1	01	00000001
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001

Version 2.0

16 March 2018

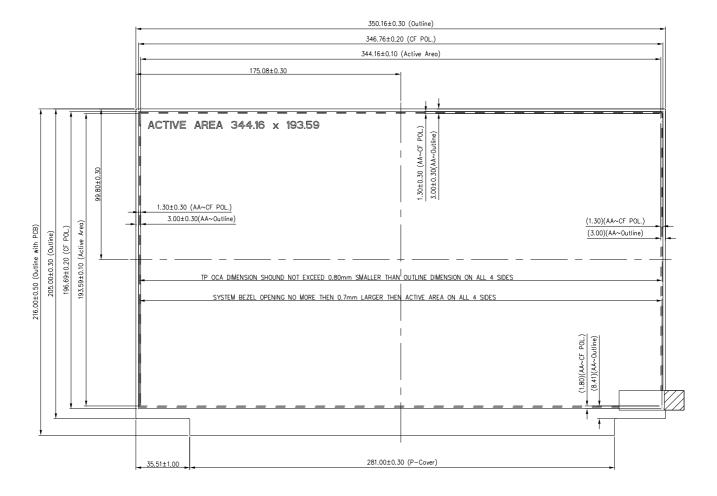
32 / 50

41	29	Standard timing ID # 2	01	00000001
42	2A	Standard timing ID # 3	01	00000001
43	2A 2B	Standard timing ID # 3	01	00000001
44	2D 2C	Standard timing ID # 3	01	00000001
45	20 2D	Standard timing ID # 4	01	00000001
46	2E	Standard timing ID # 5	01	00000001
40	2E 2F	Standard timing ID # 5	01	00000001
48	30	Standard timing ID # 6	01	00000001
49	31	Standard timing ID # 6	01	00000001
50	32	Standard timing ID # 0	01	00000001
51	33	Standard timing ID # 7	01	00000001
52	34	Standard timing ID # 7	01	00000001
53	35	Standard timing ID # 8	01	00000001
54	36	Detailed timing description # 1 Pixel clock ("152.84MHz")	B4	10110100
55	37	# 1 Pixel clock (hex LSB first)	3B	00111011
56	38	# 1 H active ("1920")	80	10000000
57	39	# 1 H blank ("330")	4A	01001010
58	38 3A	# 1 H active : H blank	71	01110001
59	3B	# 1 V active ("1080")	38	00111000
60	3D 3C	# 1 V blank ("52")	34	00110100
61	3D	# 1 V blank (32) # 1 V active : V blank	40	01000000
62	3E	# 1 H sync offset ("80")	50	01010000
63	3F	# 1 H sync pulse width ("54")	36	00110110
64	40	# 1 V sync offset : V sync pulse width ("6 : 8")	68	01101000
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width	00	00000000
66	42	# 1 H image size ("344 mm")	58	01011000
67	43	# 1 V image size ("193 mm")	C1	11000001
68	44	# 1 H image size : V image size	10	00010000
69	45	# 1 H boarder ("0")	00	00000000
70	46	# 1 V boarder ("0")	00	00000000
71		# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol	18	00011000
	47	Negatives	10	
72	48	Detailed timing description # 2	00	0000000
73	49	# 2 Flag	00	0000000
74	4A	# 2 Reserved	00	00000000
75	4B	# 2 ASCII string Model name	FE	11111110
76	4C	# 2 Flag	00	00000000
77	4D	# 4 Character of Model name ("N")	4E	01001110
78	4E	# 4 Character of Model name ("1")	31	00110001
79	4F	# 4 Character of Model name ("5")	35	00110101
80	50	# 4 Character of Model name ("6")	36	00110110
81	51	# 4 Character of Model name ("H")	48	01001000
82	52	# 4 Character of Model name ("C")	43	01000011
83	53	# 4 Character of Model name ("A")	41	01000001
84	54	# 4 Character of Model name ("-")	2D	00101101
85	55	# 4 Character of Model name ("E")	45	01000101
86	56	# 4 Character of Model name ("A")	41	01000001

Version 2.0

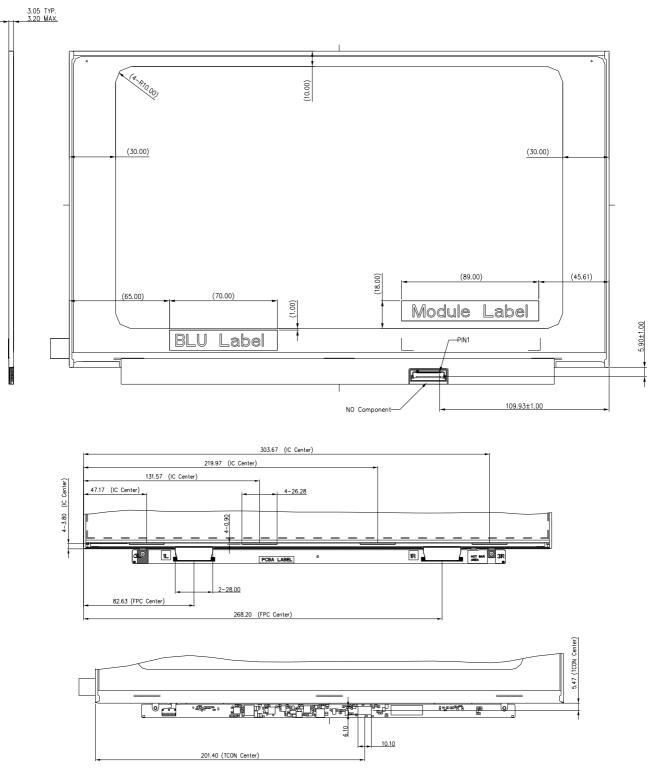
16 March 2018

33 / 50


PRODUCT SPECIFICATION

87	57	# 4 Character of Model name ("1")	31	00110001
88	58	# 4 New line character indicates end of ASCII string	0A	00001010
89	59	# 2 Padding with "Blank" character	20	00100000
90	5A	Detailed timing description # 3	00	00000000
91	5B	# 3 Flag	00	00000000
92	5C	# 3 Reserved	00	00000000
93	5D	# 3 ASCII string Vendor	FE	11111110
94	5E	# 3 Flag	00	00000000
95	5F	# 3 Character of string ("C")	43	01000011
96	60	# 3 Character of string ("M")	4D	01001101
97	61	# 3 Character of string ("N")	4E	01001110
98	62	# 3 New line character indicates end of ASCII string	0A	00001010
99	63	# 3 Padding with "Blank" character	20	00100000
100	64	# 3 Padding with "Blank" character	20	00100000
101	65	# 3 Padding with "Blank" character	20	00100000
102	66	# 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character	20	00100000
104	68	# 3 Padding with "Blank" character	20	00100000
105	69	# 3 Padding with "Blank" character	20	00100000
106	6A	# 3 Padding with "Blank" character	20	00100000
107	6B	# 3 Padding with "Blank" character	20	00100000
108	6C	Detailed timing description # 4	00	00000000
109	6D	# 4 Flag	00	00000000
110	6E	# 4 Reserved	00	00000000
111	6F	# 4 ASCII string Model Name	FE	11111110
112	70	# 4 Flag	00	00000000
113	71	# 4 Character of Model name ("N")	4E	01001110
114	72	# 4 Character of Model name ("1")	31	00110001
115	73	# 4 Character of Model name ("5")	35	00110101
116	74	# 4 Character of Model name ("6")	36	00110110
117	75	# 4 Character of Model name ("H")	48	01001000
118	76	# 4 Character of Model name ("C")	43	01000011
119	77	# 4 Character of Model name ("A")	41	01000001
120	78	# 4 Character of Model name ("-")	2D	00101101
121	79	# 4 Character of Model name ("E")	45	01000101
122	7A	# 4 Character of Model name ("A")	41	01000001
123	7B	# 4 Character of Model name ("1")	31	00110001
124	7C	# 4 New line character indicates end of ASCII string	0A	00001010
125	7D	# 4 Padding with "Blank" character	20	00100000
126	7E	Extension flag	00	00000000
127	7E 7F	Checksum	E2	11100010

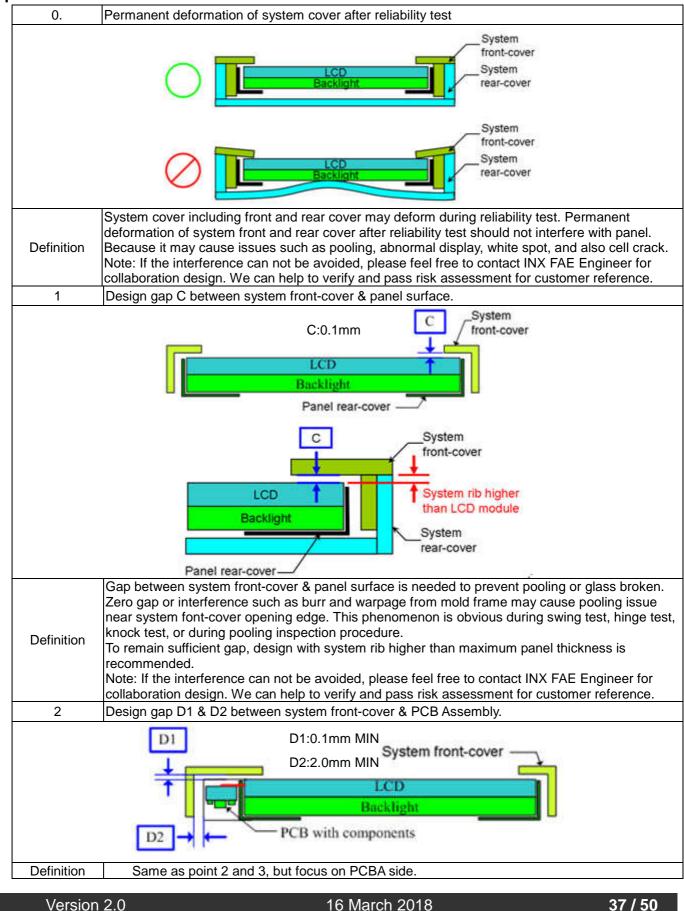
Appendix. OUTLINE DRAWING



NOTES:

- 1. IN ORDER TO AVOID ABNORMAL DISPLAY, POOLING AND WHITE SPOT, NO OVERLAPPING IS SUGGESTED AT CABLES, ANTENNAS, CAMERA, WLAN, WAN OR FOREIGN OBJECTS OVER FPC/COF, T-CON AND VR LOCATIONS. 2. LVDS/EDP CONNECTOR IS MEASURED AT PIN1 AND ITS MATING LINE.
- 3. MODÚLE FLATNESS SPEC (0.5 mm) MAX.
- 4. "()" MARKS THE REFERENCE DIMÉNSION.

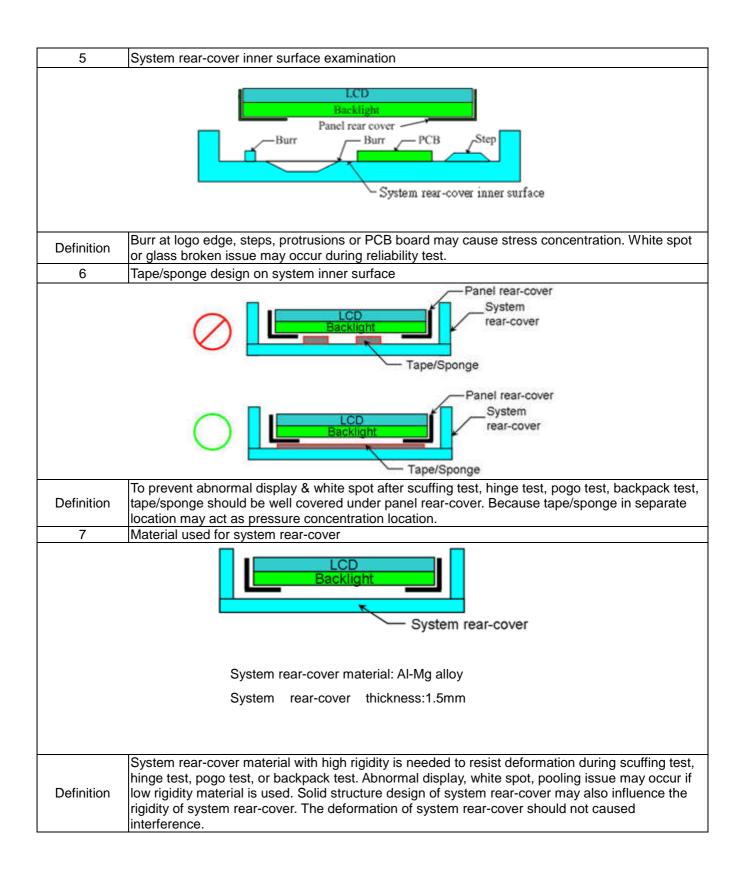
PRODUCT SPECIFICATION


DRIVER IC, COF/FPC, TCON, AND VR LOCATIONS SEE NOTES FOR EXPLANATION

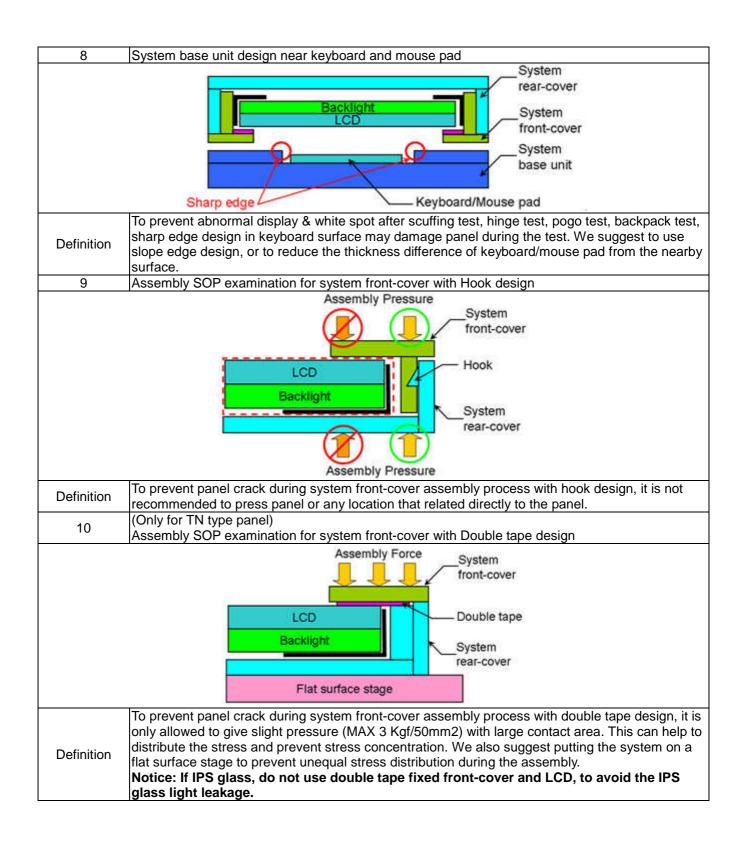
Note. Dimensions measuring instruments as below,

- 1. Length/ Width/Thickness : Caliper
- 2. Height: Height gauge

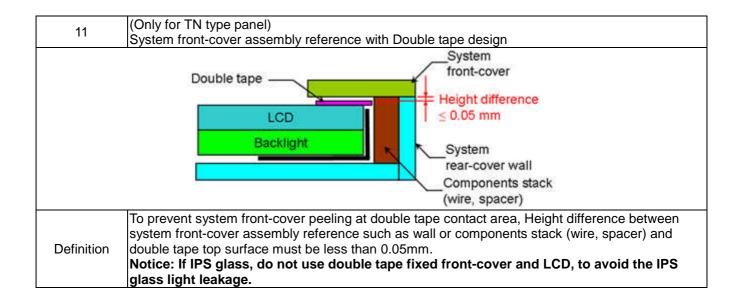
Appendix. SYSTEM COVER DESIGN GUIDANCE

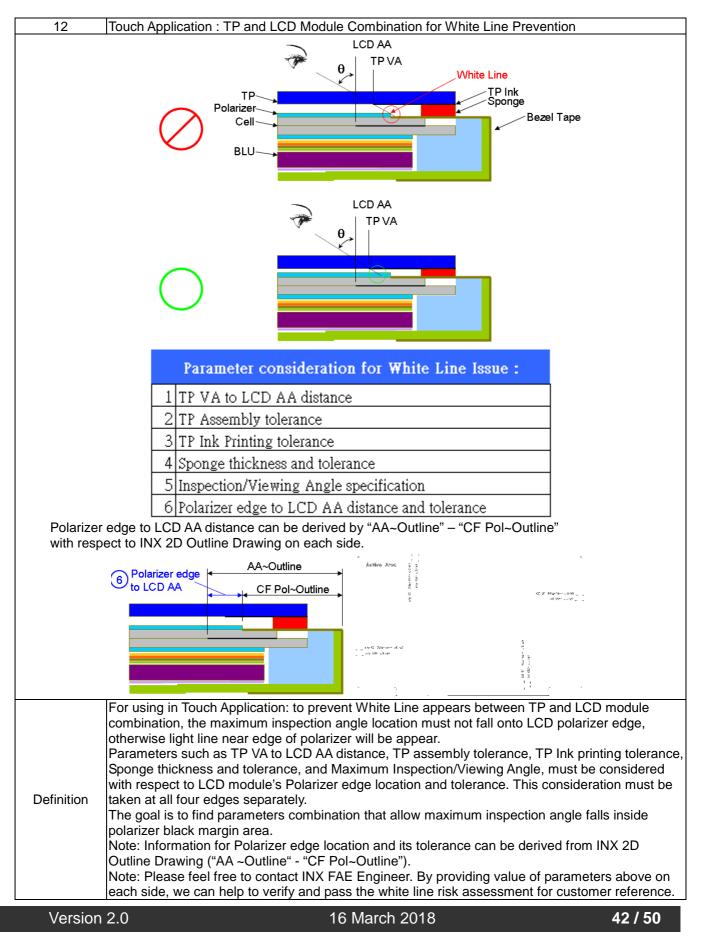


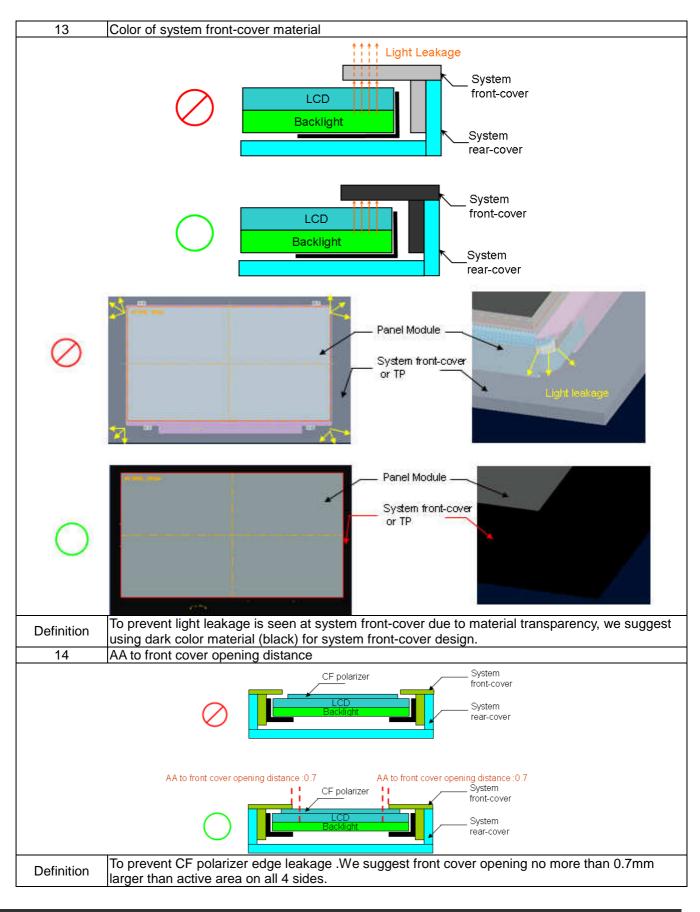
The copyright belongs to InnoLux. Any unauthorized use is prohibited.



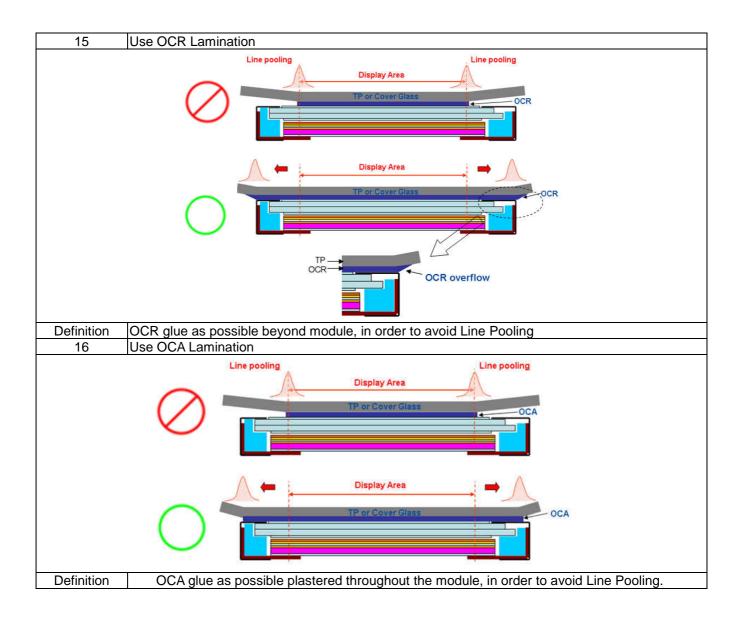
3	Interference examination of antenna cable	and WebCam wire			
	Antenna Wi	ebCam WebCam Wire WebCam Wire			
DefinitionAntenna cable or WebCam wire should not overlap with panel outline. Because issue such as abnormal display & white spot after backpack test, hinge test, twist test or pogo test may occur. Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.4Interference examination of antenna cable and Web Cam wire					
 To prevent panel damage, we suggest using CCD FPC to replace CCD cable Using double tape to fix LCM module for no bracket design. 					
CCD FPC(<0.1mm) Double Tare CCD Cable(>1.0mm) CCD Cable(>1.0mm) CCD FPC(<0.1mm) Double Tare CCD FPC					
	Rear-cover Connector	Rear Cover Width(A)	A = 30mm		
	Sponge Camera/Antenna Double Tape Stopper	Cover edge to Double Tape(B) CCD FPC thickness	B = 3.0mm <0.1mm		
	CDD Cable/FPC LCM Module Hook Panel outline	Sponge thickness	<0.1mm 0.5mm 0.2~0.3mm(compressed)		
Definition If the antenna cable or Web Cam wire must overlap with the panel outline, both sides of the antenna cable or Web Cam wire must have a sponge(Sponge material can not contain NH3) and sponge require higher antenna cable or Web Cam wire.(Antenna cable or Web Cam wire should not overlap with TCON,COF/FPC,Driver IC) Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.					



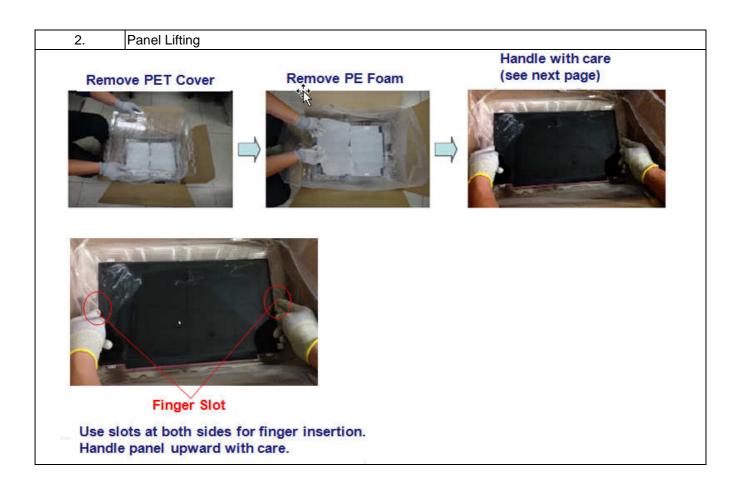




The copyright belongs to InnoLux. Any unauthorized use is prohibited.

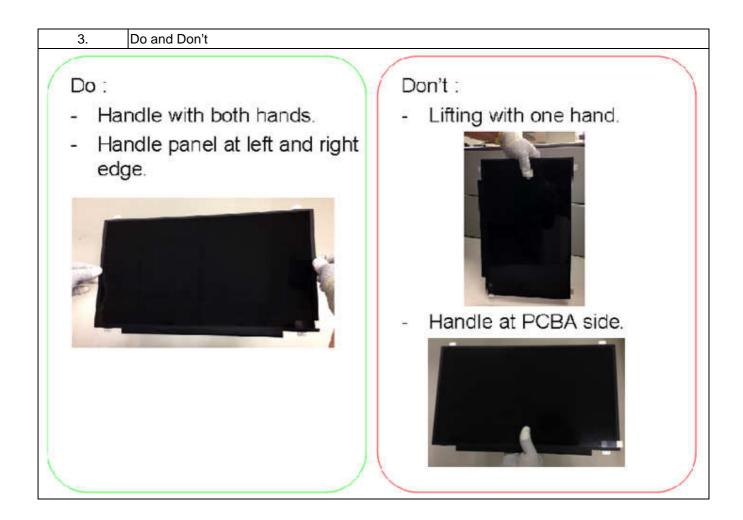


Ve	rsion	2.0

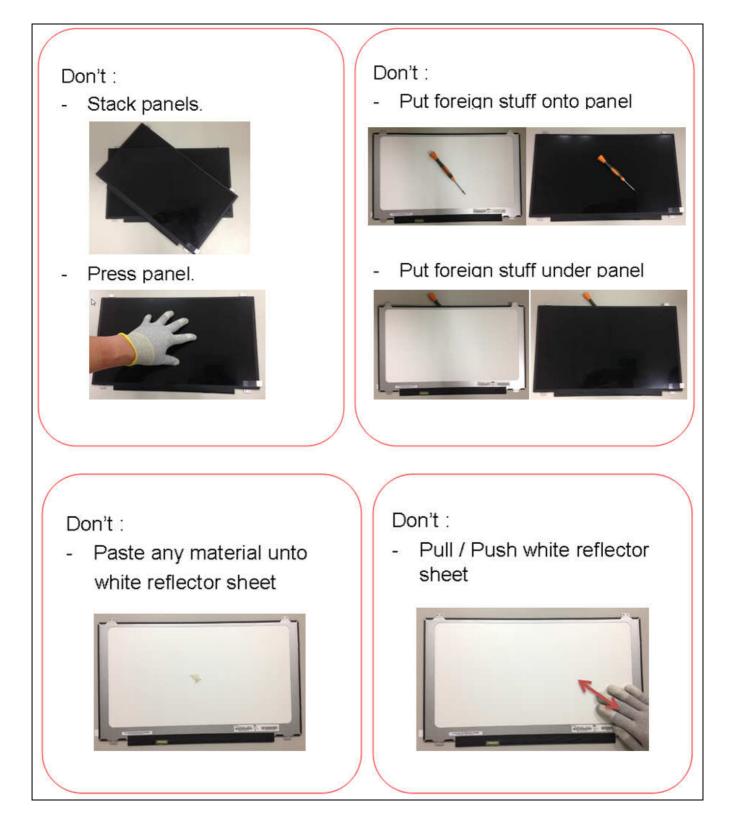


Appendix. LCD MODULE HANDLING MANUAL

 This SOP is prepared to prevent panel dysfunction possibility through incorrect handling procedure. Purpose This manual provides guide in unpacking and handling steps. Any person which may contact / related with panel, should follow guide stated in this manual to prevent panel loss. 					
1.	Unpacking				
		Open carton	Remove EPE Cushion		
Open plastic bag		Cut Adhesive Tape	Remove EPE Cushion		



PRODUCT SPECIFICATION


PRODUCT SPECIFICATION



PRODUCT SPECIFICATION

INNOLUX 群創光電

PRODUCT SPECIFICATION

INNOLUX 群創光電

PRODUCT SPECIFICATION

Do :

Remove panel protector film starts from pull tape

Don't :

- Remove panel protector film From film another side.

- Touch or Press PCBA Area.

