

() Preliminary Specifications (v) Final Specifications

Module 27.0 Inch Color TFT-LCD	
Model Name	G270ZAN01.0

Customer	Date	Approved by	Date
		Jason Pan	2017. 12. 21
Checked & Approved by	Date	Prepared by	Date
		HsinYin Lee	2017. 12. 21
Customer's s	ign back page		ay Business Division / onics corporation

Contents

1.	Operating Precautions	4
2.	General Description	5
	2.1 Display Characteristics	5
	2.2 Optical Characteristics	6
3.	Functional Block Diagram	9
4.	Absolute Maximum Ratings	10
	4.1 Absolute Ratings of TFT LCD Module	10
	4.2 Absolute Ratings of Environment	10
5.	Electrical Characteristics	11
	5.1 TFT LCD Module	11
	5.2 Backlight Unit	13
6.	Signal Characteristic	15
	6.1 Pixel Format Image	15
	6.2 Scanning Direction	16
	6.3 Signal Description	17
	6.4 The Input Data Format	20
	6.5 Interface Timing	22
	6.6 Power ON/OFF Sequence	23
7.	Reliability Test Criteria	24
8.	Mechanical Characteristics	25
	8.1 LCM Outline Dimension	25
9.	Label and Packaging	27
	9.1 Shipping Label (on the rear side of TFT-LCD display)	27
	9.2 Carton Package	28
10) Safety	28
	10.1 Sharp Edge Requirements	29
	10.2 Materials	29
	10.3 Capacitors	29
	10.4 National Test Lab Requirement	29

AU OPTRONICS CORPORATION

Date Version Page **Old description New Description** (yyyy/m/d) 1.0 2017/06/12 All first edition of final spec p.14 Upgrade LED lifetime spec 2.0 2017/12/21 p.28 Update carton package

G270ZAN01.0 rev.2.0

4/29

AU OPTRONICS CORPORATION

1. Operating Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED light bar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time and lamp ignition voltage.
- 14) Continuous operating TFT-LCD display under low temperature environment may accelerate lamp exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.

2. General Description

This specification applies to the Color Active Matrix Liquid Crystal Display G270ZAN01.0 composed of a TFT-LCD display, a driver and power supply circuit, and a LED backlight system. The screen format is intended to support the UHD (3840(H) x 2160(V)) screen and 1.07B colors.

LED driving board for backlight unit is included. All input signals are 8 lanes eDP interface compatible.

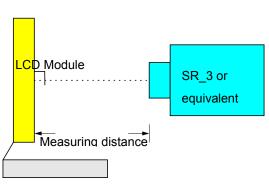
2.1 Display Characteristics

The following items are characteristics summary on the table under 25 °C condition:

Items	Unit	Specifications
Screen Diagonal	[inch]	26.93" (684mm)
Active Area	[mm]	596.16 (H) x 335.34 (V)
Resolution		3840(x3) x 2160
Pixel Pitch	[mm]	0.15525 (per one triad) x 0.15525
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		AHVA mode, Normally Black
Nominal Input Voltage VDD	[Volt]	+12V (Typ)
Power Consumption	[Watt]	Total = 60.0W (Typ) (LCD =10.8W, BLU =49.2W)
Weight	[Grams]	3400 (Typ)
Physical Size	[mm]	630.0 (H) x 368.2 (V) x 22.9 (D) (Typ)
Electrical Interface		8-lanes eDP , 8bits RGB data input
Surface Treatment		Anti-Glare treatment
Support Color		1.07B colors (8bit+Hi FRC)
Temperature Range Operating Storage (Non-Operating)	[°C] [°C]	0 to +50 -20 to +60
RoHS Compliance		

AU OPTRONICS CORPORATION

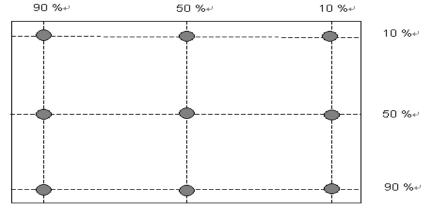
2.2 Optical Characteristics The optical characteristics are measured under stable conditions at 25 °C (Room Temperature):


Item	Unit	Conditions		Min.	Тур.	Max.	Note
White Luminance	cd/m ²	ILED=70mA(center	point)	640	800		1
Uniformity	%	9 points		80	85		2,3
Contrast Ratio				700	1000		4
		Rising					
Response Time	msec	Falling					5
		Rising + Falling	Rising + Falling		16	25	
		Horizontal	(Right)	75	89		
Viewing Angle	degree	CR >= 10	(Left)	75	89		
		ee Vertical	(Upper)	70	89		6
		CR >= 10	(Lower)	70	89		
		Red x		0.653	0.683	0.713	
		Red y		0.272	0.302	0.332	
		Green x		0.239	0.269	0.299	
Color / Chromaticity Coordinates		Green y 0.625	0.655	0.685			
(CIE 1931)		Blue x	Blue x		0.149	0.179	
		Blue y		0.012	0.042	0.072	
		White x		0.283	0.313	0.343	
		White y		0.299	0.329	0.359	

Note 1: Measurement method

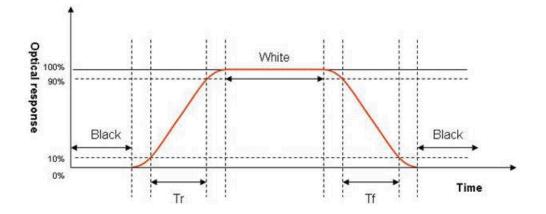
Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (SR_3 or equivalent)

Aperture 1° with 50cm viewing distance


- Test Point Center
- Environment < 1 lux

Module Driving Equipment

Note 2: Definition of 9 points position


Note 3: The luminance uniformity of 9 points is defined by dividing the minimum luminance values by the maximum test point luminance

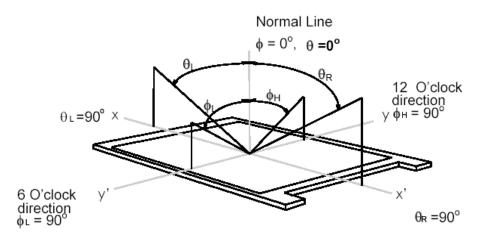
$$\delta_{W9} = \frac{\text{Minimum Brightness of nine points}}{\text{Maximum Brightness of nine points}}$$

Note 4: Definition of contrast ratio (CR):

Note 5: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.

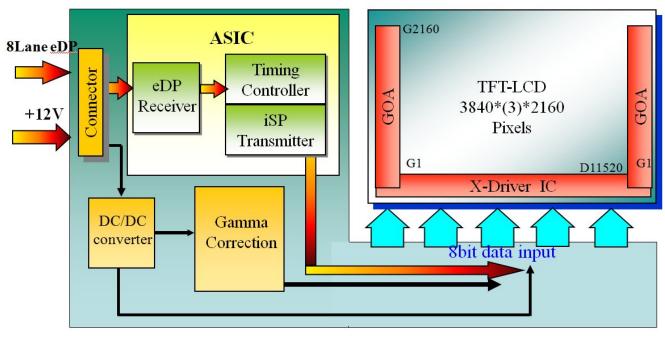
Note 6: Definition of viewing angle


Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° (θ)

horizontal left and right, and 90° (Φ) vertical high (up) and low (down). The measurement direction is typically G270ZAN01.0 rev.2.0 7/29

AU OPTRONICS CORPORATION

perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.



AU OPTRONICS CORPORATION

3. Functional Block Diagram

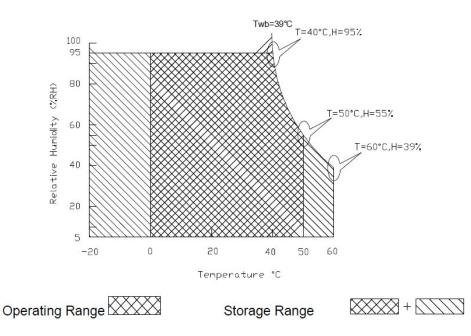
The following diagram shows the functional block of the 27.0 inch color TFT/LCD module:

X PCB

G270ZAN01.0 rev.2.0 9/29

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings


4.1 Absolute Ratings of TFT LCD Module

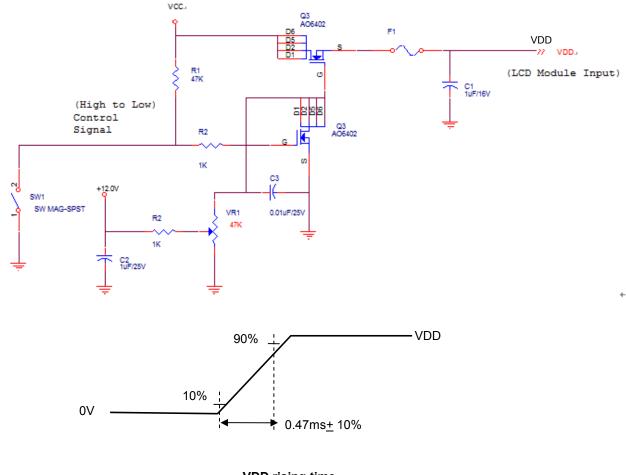
ltem	Symbol	Min	Max	Unit
Logic/LCD drive Voltage	Vin	GND-0.3	14	[Volt]

4.2 Absolute Ratings of Environment

ltem	Symbol	Min	Max	Unit
Operating Temperature	TOP	0	+50	[°C]
Operation Humidity	HOP	5	90	[%RH]
Storage Temperature	TST	-20	+60	[°C]
Storage Humidity	HST	5	90	[%RH]

Note: Maximum Wet-Bulb should be 39 $^{\circ}\text{C}$ and no condensation.

5. Electrical Characteristics


5.1 TFT LCD Module

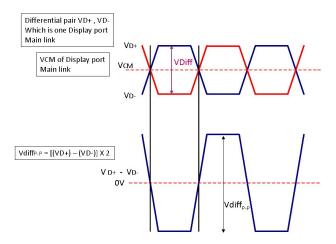
5.1.1 Power Specification

Input power specifications are shown as follows;

Symbol	Parameter	Min	Тур	Max	Units	Remark
VDD	Power supply Input voltage	10.8	12.0	13.2	[Volt]	
IDD	Power supply Input Current (RMS)	-	0.90	1.08	[A]	VDD= 12.0V, White pattern, Fv=60Hz
IRush	Inrush Current	-	-	3.0	[A]	Note 1
PDD	VDD Power Consumption	-	10.8	11.88	[Watt]	VDD= 12.0V , White pattern, Fv=60Hz
VDDrp	Allowable VDD Ripple Voltage	-	-	VDD* 5%	[mV]	VDD= 12.0V, White pattern, Fv=60Hz

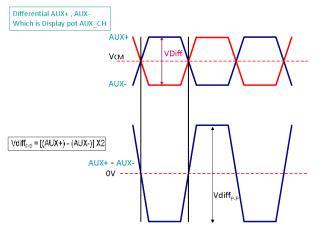
Note 1: Measurement condition:

VDD rising time



AU OPTRONICS CORPORATION

5.1.2 eDP Electrical Characteristics


- Follow as VESA DisplayPort Standard Version 1.2
- a. DisplayPort main link signal:

	DisplayPort main link					
	Min Typ Max unit					
VCM	VCM RX input DC Common Mode Voltage 0 - 2			2.0	V	
VDiff _{P-P}	VDiff _{P-P} Peak-to-peak Voltage at a receiving Device 150 mV				mV	

b. DisplayPort AUX_CH signal:

	DisplayPort AUX_CH					
		Min	Тур	Max	unit	
VCM	AUX DC Common Mode Voltage	0	-	2.0	V	
VDiff _{P-P}	AUX Peak-to-peak voltage at a receiving device	0.27	-	1.36	V	

c. DisplayPort VHPD signal:

	DisplayPort VHPD				
		Min	Тур	Max	unit
VHPD	HPD Voltage	2.25	-	3.6	V

5.2 Backlight Unit

5.2.1 LED Backlight Unit : Driver Connector

Dealdisht	manufacturer	JST
Backlight	part number	S14B-PH-SM6-K-TB(HF)
	manufacturer	JST
Mating	part number	PHR-14

Signal for LED connector

Pin #	Symbol	Pin Description
1	VDD	Power +24V
2	VDD	Power +24V
3	VDD	Power +24V
4	VDD	Power +24V
5	VDD	Power +24V
6	GND	GND
7	GND	GND
8	GND	GND
9	GND	GND
10	GND	GND
11	NC	Do not connect
12	EN	Enable(0V:disable, 2.5~5V:Enable)
13	Dimming	PWM; duty 10%~ 100%
14	NC	Do not connect

5.2.3 Backlight input signal characteristics

Following characteristics are measured under a stable condition using an inverter at 25°C (Room Temperature):

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
VDD	Input Voltage	21.6	24.0	26.4	[Volt]	
I _{VDD}	Input Current		2.05	2.46	[A]	100% PWM Duty
P _{VDD}	Power Consumption		49.20	59.04	[Watt]	100% PWM Duty
Irush LED	Inrush Current	-	-	6	[A]	at rising time=470us
	Dimming Frequency		0.2	20	[kHz]	
F _{PWM}	Swing Voltage	3	3.3	5	V	
	Dimming Duty Cycle	10	-	100	%	
I _{F (one channel)}	LED Forward Current		70		mA	Ta = 25°C
		-	-	-	Volt	
\mathbf{V}_{F} (one channel)	LED Forward Voltage	-	33	37.4	Volt	I _F =70 mA, Ta = 25°C 10 channel/LB & 2 LB/Panel
		-	3	3.4		
	LED Power		22.4	06.40	Watt	I _F =70 mA, Ta = 25°C
PLED (One LB)	Consumption	-	23.1	26.18	wall	LBx2 : 28.05x2=56.1(Max)
LED Lifetime		50,000			Hrs	I _F =70 mA, Ta= 25⁰C

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: VDD, P_{VDD}, P_{VDD}, Irush LED are defined for LED B/L.(100% duty of PWM dimming)

Note 3: I_F , V_F are defined for one channel LED. There are ten LED channels in one light bar. P_{LED} is defined for one light bar. For G270ZAN01.0, there are two light bars in back light unit.

Note 4: If G270ZAN01.0 module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 5: The LED life-time is estimated data. And is defined when a single LED operated in room temperature, the estimated time to 50% degradation of initial luminous.

Note 6: Only one kind types for adjusting brightness: PWM .

Product Specification AU OPTRONICS CORPORATION

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

	1st Lane0 ↓ 1	lst Lanel ↓ 2	1st Lane2 ↓ 3	1st Lane3 ↓ 4	 1920	2nd Lane0 ↓ 1921	2nd Lane1 ↓ 1922	2nd Lane2 ↓ 1923	2nd Lane3 ↓ 1924	 3840
1	RGB	RGB	RGB	RGB		RGB	RGB			 RGB
2160	RGB	R G B	R G B	RGB	 RGB	RGB	RGB	RGB	R G B	 R G B

Note: The module use 8-Lanes eDP interface.

 $\begin{array}{c} 1^{st} \text{ port:} \\ 1^{st} \text{ Lane0} : 1+4n \text{ pixel} \\ 1^{st} \text{ Lane1} : 2+4n \text{ pixel} \\ 1^{st} \text{ Lane2} : 3+4n \text{ pixel} \\ 1^{st} \text{ Lane3} : 4+4n \text{ pixel} \\ 2^{nd} \text{ port:} \\ 2^{nd} \text{ Lane0} : 1921+4n \text{ pixel} \\ 2^{nd} \text{ Lane1} : 1922+4n \text{ pixel} \\ 2^{nd} \text{ Lane2} : 1923+4n \text{ pixel} \\ 2^{nd} \text{ Lane3} : 1924+4n \text{ pixel} \\ n=0{\sim}479 \end{array}$

Product Specification AU OPTRONICS CORPORATION

G270ZAN01.0 rev.2.0 16/29

6.2 Scanning Direction

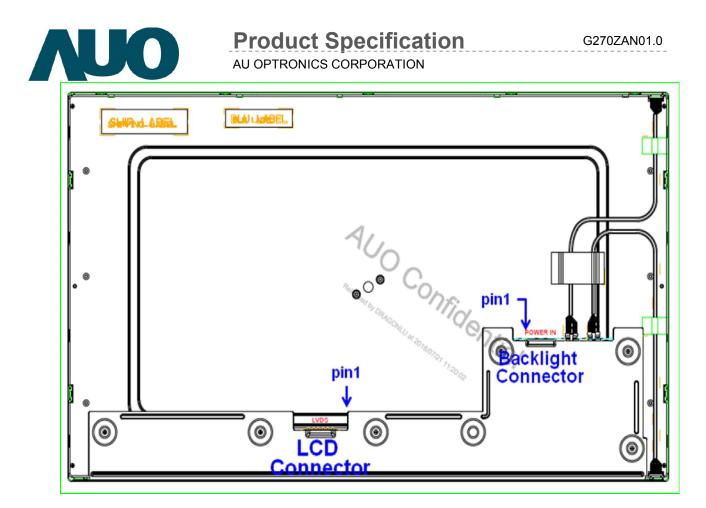
The following figures show the image seen from the front view. The arrow indicates the direction of scan.

6.3 Signal Description The module uses a LVDS receiver embedded in AUO's ASIC. LVDS is a differential signal technology for LCD interface and a high-speed data transfer device.

6.3.1 TFT LCD Module: LVDS Connector

Connector Name / Designation	Signal Connector
Manufacturer	JAE
Connector Model Number	FI-RTE51SZ-HF
Adaptable Plug	FI-RE51CL

PIN #	Symbol	Description
1	VDD	Power +12V
2	VDD	Power +12V
3	VDD	Power +12V
4	VDD	Power +12V
5	VDD	Power +12V
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	NC	No connection (for AUO test only. Do not connect)
10	NC	No connection (for AUO test only. Do not connect)
11	NC	No connection (for AUO test only. Do not connect)
12	NC	No connection (for AUO test only. Do not connect)
13	NC	No connection (for AUO test only. Do not connect)
14	NC	No connection (for AUO test only. Do not connect)
15	NC	No connection (for AUO test only. Do not connect)
16	NC	No connection (for AUO test only. Do not connect)
17	GND	Ground
18	1st Lane3_N	Negative eDP differential data input
19	1st Lane3_P	Positive eDP differential data input
20	GND	Ground
21	1st Lane2_N	Negative eDP differential data input
22	1st Lane2_P	Positive eDP differential data input
23	GND	Ground
24	1st Lane1_N	Negative eDP differential data input
25	1st Lane1_P	Positive eDP differential data input
26	GND	Ground
27	1st Lane0_N	Negative eDP differential data input
28	1st Lane0_P	Positive eDP differential data input


AU OPTRONICS CORPORATION

29	GND	Ground
30	1st AUX_CH_P	Positive AUX Channel differential data input
31	1st AUX_CH_N	Negative AUX Channel differential data input
32	GND	Ground
33	NC	No connection (for AUO test only. Do not connect)
34	GND	Ground
35	2nd Lane3_N	Negative eDP differential data input
36	2nd Lane3_P	Positive eDP differential data input
37	GND	Ground
38	2nd Lane2_N	Negative eDP differential data input
39	2nd Lane2_P	Positive eDP differential data input
40	GND	Ground
41	2nd Lane1_N	Negative eDP differential data input
42	2nd Lane1_P	Positive eDP differential data input
43	GND	Ground
44	2nd Lane0_N	Negative eDP differential data input
45	2nd Lane0_P	Positive eDP differential data input
46	GND	Ground
47	2nd AUX_CH_P	Positive AUX Channel differential data input
48	2nd AUX_CH_N	Negative AUX Channel differential data input
49	GND	Ground
50	HPD	Hot plug detection
51	GND	Ground

Note 1: Input Signals shall be in low status when VDD is off.

Note 2: High stands for "3.3V", Low stands for "0V", NC means "No Connection".

Note 3: RSV means "Reserved".

6.4 The Input Data Format

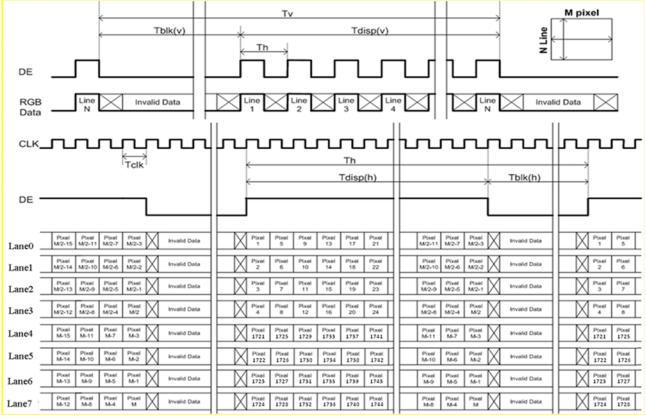
6.4.1 eDP Data Format

lst Lane0	lst Lane l	lst Lane2	lst Lane3	2nd Lane0	2nd Lane1	2nd Lane2	2nd Lane3
R1-9:2	R2-9:2	R3-9:2	R4-9:2	R1921-9:2	R1922-9:2	R1923-9:2	R1924-9:2
R1-1:0IG1-9:4	R2-1:0IG2-9:4	R3-1:0IG3-9:4	R4-1:0IG4-9:4	R1921-1:0/G1921-9:4	R1922-1:0IG1922-9:4	R1923-1:0IG1923-9:4	R1924-1:0IG1924-9:4
G1-3:0IB1-9:6	G2-3:0IB2-9:6	G3-3:0IB3-9:6	G4-3:0IB4-9:6	G1921-3:0IB1921-9:6	G1922-3:0IB1922-9:6	G1923-3:0IB1923-9:6	G1924-3:0IB1924-9:6
B1-5:0IR5-9:8	B2-5:0IR6-9:8	B3-5:0IR7-9:8	B4-5:0IR8-9:8	B1921-5:0IR1925-9:8	B1922-5:0IR1926-9:8	B1923-5:0IR1927-9:8	B1924-5:0IR1928-9:8
R5-7:0	R6-7:0	R7-7:0	R8-7:0	R1925-7:0	R1926-7:0	R1927-7:0	R1928-7:0
G5-9:2	G6-9:2	G7-9:2	G8-9:2	G1925-9:2	G1926-9:2	G1927-9:2	G1928-9:2
G5-1:0IB5-9:4	G6-1:0IB6-9:4	G7-1:0IB7-9:4	G8-1:0IB8-9:4	G1925-1:0IB1925-9:4	G1926-1:0IB1926-9:4	G1927-1:0IB1927-9:4	G1928-1:0IB1928-9:4
B5-3:0IR9-9:6	B6-3:0IR10-9:6	B7-3:0IR11-9:6	B8-3:0IR12-9:6	B1925-3:0IR1929-9:6	B1926-3:0IR1930-9:6	B1927-3:0IR1931-9:6	B1928-3:0IR1932-9:6
R9-5:0IG9-9:8	R10-5:0IG10-9:8	R11-5:0IG11-9:8	R12-5:0IG12-9:8	R1929-5:0IG1929-9:8	R1930-5:0IG1930-9:8	R1931-5:0IG1931-9:8	R1932-5:0IG1932-9:8
G9-7:0	G10-7:0	G11-7:0	G12-7:0	G1929-7:0	G1930-7:0	G1931-7:0	G1932-7:0
B9-9:2	B10-9:2	B11-9:2	B12-9:2	B1929-9:2	B1930-9:2	B1931-9:2	B1932-9:2
B9-1:0IR13-9:4	B10-1:0IR14-9:4	B11-1:0IR15-9:4	B12-1:0IR16-9:4	B1929-1:0IR1933-9:4	B1930-1:0IR1934-9:4	B1931-1:0IR1935-9:4	B1932-1:0IR1936-9:4
R13-3:0IG13-9:6	R14-3:0IG14-9:6	R15-3:0IG15-9:6	R16-3:0IG16-9:6	R1933-3:0IG1933-9:6	R1934-3:0IG1934-9:6	R1935-3:0IG1935-9:6	R1936-3:0IG1936-9:6
G13-5:0IB13-9:8	G14-5:0IB14-9:8	G15-5:0IB15-9:8	G16-5:0IB16-9:8	G1933-5:0IB1933-9:8	G1934-5:0IB1934-9:8	G1935-5:0IB1935-9:8	G1936-5:0IB1936-9:8
B13-7:0	B14-7:0	B15-7:0	B16-7:0	B1933-7:0	B1934-7:0	B1935-7:0	B1936-7:0

6.4.2 Color versus Input Data

.

The following table is for color versus input data (10bit). The higher the gray level, the brighter the color.


															Colo	or Inj	out D)ata														
Color	Gary Level		RED data (MSB :R9, LSB :R0)				GREEN data (MSB :G9, LSB :G0)					BLUE data (MSB :B9, LSB :B0)								Remark												
		R9	R8	R7	R6	R5	R4	R3	R2	R1	RO	G9	G8	G7	G6	G5	G4	G3	G2	G1	GO	В9	B8	Β7	B6	B5	Β4	В3	B2	B1	BO	
Black	-	0	0	0	0	O	O	O	O	O	O	0	0	0	0	0	0	0	0	0	0	0	0	O	O	0	0	0	O	0	O	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
L511	-	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	O	0	0	0	O	0	O	Black
Red	:	1	:		1	:	:		:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	O	O	0	0	0	O	0	O	
	LO	0	0	0	0	0	0	O	0	O	O	0	0	0	0	0	0	0	0	0	0	0	0	O	O	0	0	0	O	0	O	Black
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	:	:	
	L1023	0	0	0	0	0	O	O	O	O	O	1	1	1	1	1	1	1	1	1	1	0	0	O	O	0	0	0	O	0	O	
	LO	0	0	0	0	0	O	O	0	O	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	
	L1023	0	0	0	0	O	O	O	O	O	O	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	

AU OPTRONICS CORPORATION

6.4.3 Input Timing Diagram

(Lane0~7 eDP data:1, 2, 3, 4, 1921, 1922, 1923, 1924)

6.5 Interface Timing

6.5.1 Timing Characteristics

The input timing is shown as the following table.

Symbol	Descriptio	'n	Min.	Тур.	Max.	Unit	Remark
Τv		Period	2180	2200	4500	Th	
Tdisp (v)		Active	2160	2160	2160	Th	
Tblk (v)	Vertical Section	Blanking	20	40	2340	Th	
Fv		Frequency	29	60	65	Hz	Note 6-6
							Note 6-7
Th		Period	2000	2100	3520	Tclk	
Tdisp (h)	Horizontal Section	Active	1920	1920	1920	Tclk	
Tblk (h)	Honzontal Section	Blanking	80	180	1600	Tclk	
Fh		Frequency	40	132	151	kHz	Note 6-4
Tclk	Pixel Clock	Period	3.330	3.608	12.500	ns	1/Fclk
Fclk		Frequency	80	277	300.3	MHz	Note 6-5
	Link Rate per Lane			2.7		Gbps	2180

Note 6-4: The equation is listed as following. Please don't exceed the above recommended value.

Fh (Min.) = Fclk (Min.) / Th (Min.) Fh (Typ.) = Fclk (Typ.) / Th (Typ.) Fh (Max.)= Fclk (Max.) / Th (Min.)

Note 6-5: The equation is listed as following. Please don't exceed the above recommended value.

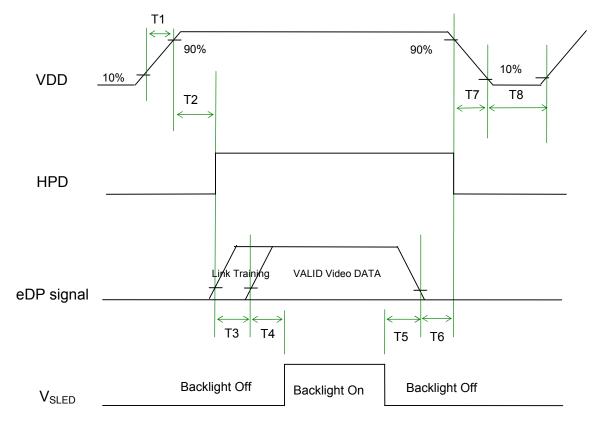
1st Lane N & 2nd Lane N skew < 200ns

Fclk (Typ.) = Fv (Typ.) x Th (Typ.) x Tv (Typ.)

Fclk (Min.) \leq Fv x Th x Tv \leq Fclk (Max.)

Note 6-6: The equation is listed as following. Please don't exceed the above recommended value.

Fv =Fclk(Typ.) / (Tv x Th)


Note 6-7: The optimal Vertical Frequency is 50~65 Hz for best picture quality.

AU OPTRONICS CORPORATION

6.6 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power ON/OFF sequence timing

Symbol		Value			Remark
Symbol	Min.	Тур.	Max.	Unit	
T1	0.5	-	10	[ms]	
T2	0	-	200	[ms]	
Т3	0	-	-	[ms]	
T4	500	-	-	[ms]	
T5	100	-	-	[ms]	
Т6	0		50	[ms]	
T7	0	-	200	[ms]	
Т8	1000	-	-	[ms]	

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

AU OPTRONICS CORPORATION

7. Reliability Test Criteria

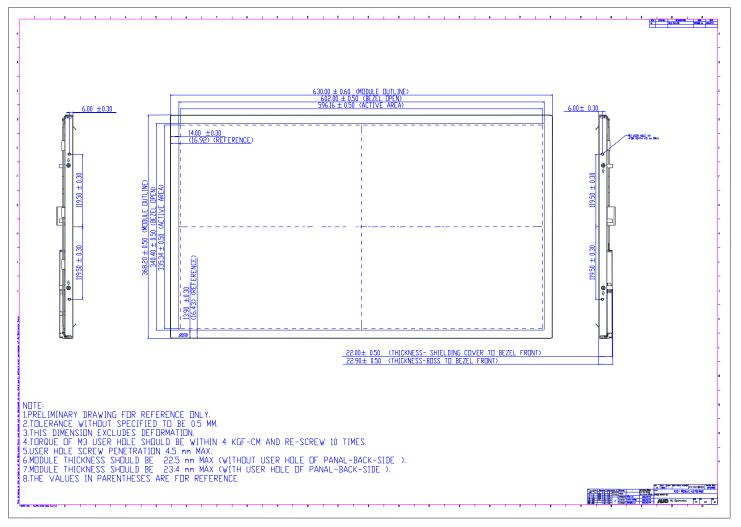
Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50oC, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50oC, 300hours	
Low Temperature Operation (LTO)	Ta= 0oC, 300hours	
High Temperature Storage (HTS)	Ta= 60oC, 300hours	
Low Temperature Storage (LTS)	Ta= -20oC, 300hours	
	Acceleration: 1.5 G	
Vibration Test	Wave: Random	
(Non-operation)	Frequency: 10 - 200Hz	
	Sweep: 30 Minutes each Axis (X, Y, Z)	
	Acceleration: 50 G	
Shock Test	Wave: Half-sine	
(Non-operation)	Active Time: 20 ms	
	Direction: $\pm X$, $\pm Y$, $\pm Z$ (one time for each Axis)	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20 oC /30min, 60/ oC 30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
	Contact Discharge: ± 8KV, 150pF(330 Ω) 1sec,	2
ECD (Electrostatic Discharge)	9 points, 25 times/ point.	2
ESD (Electrostatic Discharge)	Air Discharge: ± 15KV, 150pF(330 Ω) 1sec	
	9 points, 25 times/ point.	
	Operation:10,000 ft	
Altitude Test	Non-Operation:30,000 ft	

Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change.

- **a.** A cycle of rapid temperature change consists of varying the temperature from -20oC to 60oC, and back again. Power is not applied during the test.
- **b.** After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

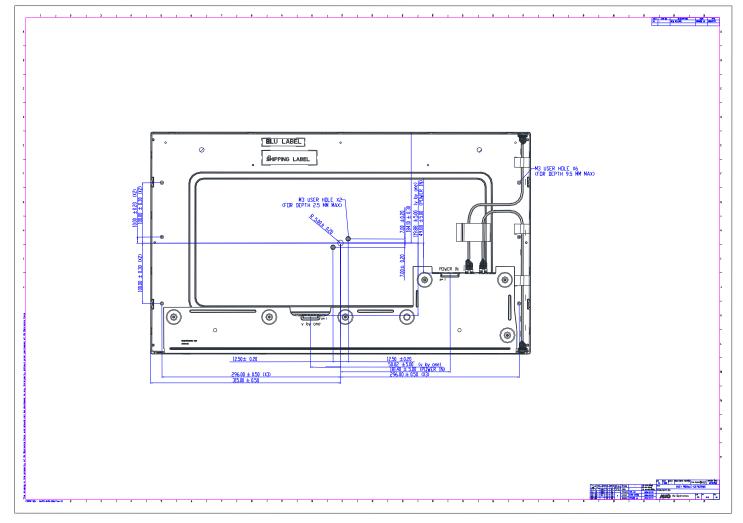
Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.

Note 3:


- a. Water condensation is not allowed for each test items.
- b. Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- c. The reliability test is performed only to examine the TFT-LCD module capability.
- d. To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.

G270ZAN01.0

8. Mechanical Characteristics


8.1 LCM Outline Dimension

G270ZAN01.0

AU OPTRONICS CORPORATION

 G270ZAN01.0 rev.2.0 26/29

G270ZAN01.0 rev.2.0 27/29

AU OPTRONICS CORPORATION

9. Label and Packaging

9.1 Shipping Label (on the rear side of TFT-LCD display)

Note 1: For Pb Free products, AUO will add by for identification.

Note 2: For RoHS compatible products, AUO will add **RoHS** for identification.

Note 3: For China RoHS compatible products, AUO will add 60 for identification.

Note 4: The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

AU OPTRONICS CORPORATION

- Max capacity : 5 PCS TFT-LCD module per carton
- Max weight: 20 kg per carton
- Outside dimension of carton: 730mm(L) * 270mm(W) * 470mm(H)
- Pallet size : 1200 mm * 800 mm * 132mm
- Box stacked

Module by air_Max : (1*4) *3 layers , one pallet put 12 boxes , total 60pcs module Module by sea_Max : (1*4) *3 layers + (1*4) *1 layers , two pallet put 16 boxes , total 80pcs module Module by sea_HQ_Max : (1*4) *3 layers + (1*4) *1 layers , two pallet put 16 boxes , total 80pcs module

> G270ZAN01.0 rev.2.0 28/29

G270ZAN01.0 rev.2.0

29/29

Product Specification AU OPTRONICS CORPORATION

10.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

10.2 Materials

10.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

10.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

10.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

10.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 60950-1 second edition

U.S.A. Information Technology Equipment