

Doc. Number:

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: N156HCE SUFFIX: EN1 Rev.C1

Customer: HP	
APPROVED BY	SIGNATURE
<u>Name / Title</u> Note : HP P/N: L42553-JD1 HP H/W: C1	
Please return 1 copy for your con signature and comments.	firmation with your

Approved By	Checked By	Prepared By
許君逑	龔恬永	張志誠

CONTENTS

1. GENERAL DESCRIPTION 1.1 OVERVIEW		
2. MECHANICAL SPECIFICATIONS		
2.1 CONNECTOR TYPE		6
3. ABSOLUTE MAXIMUM RATINGS		7
3.1 ABSOLUTE RATINGS OF ENVI	RONMENT	7
3.2 ELECTRICAL ABSOLUTE RAT	INGS	7
3.2.1 TFT LCD MODULE		7
4. ELECTRICAL SPECIFICATIONS		8
4.1 FUNCTION BLOCK DIAGRAM		
4.2. INTERFACE CONNECTIONS		
4.3 ELECTRICAL CHARACTERIST	ïCS	
4.3.1 LCD ELETRONICS SPEC	IFICATION	
4.3.2 LED CONVERTER SPECI	FICATION	
4.3.3 BACKLIGHT UNIT		14
4.4 DISPLAY PORT INPUT SIGNAL	TIMING SPECIFICATIONS	
4.4.1 DISPLAY PORT INTERFA	ACE	
4.4.2 COLOR DATA INPUT ASS	SIGNMENT	16
	IONS	
4.6 POWER ON/OFF SEQUENCE		
5. OPTICAL CHARACTERISTICS		
5.1 TEST CONDITIONS		21
6. RELIABILITY TEST ITEM		25
7. PACKING		26
7.1 MODULE LABEL		
7.2 CARTON		
7.3 PALLET		
7.4 UN-PACKAGING METHOD		
8. PRECAUTIONS		
8.1 HANDLING PRECAUTIONS		
8.2 STORAGE PRECAUTIONS		
8.3 OPERATION PRECAUTIONS		
Appendix. EDID DATA STRUCTUR	Е	
	N GUIDANCE	
Version 3.0	7 March 2019	2 / 48

Appendix. LCD MODULE HANDLING MANUAL

7 March 2019

REVISION HISTORY

Version	Date	Page	Description
3.0	Mar.04,2019	All	Spec Ver. 3.0 was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N156HCE-EN1 is a 15.6" (15.547" diagonal) TFT Liquid Crystal Display NB module with LED Backlight unit and 30 pins eDP interface. This module supports 1920 x 1080 FHD mode and can display 262,144 colors.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	15.547 diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.17925 (H) x 0.17925 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Interface	eDP1.2		
Transmissive Mode	Normally Black	-	-
Surface Treatment	Hard coating (3H), Anti-Glare	-	-
Luminance, White	300	Cd/m2	
Color Gamma	72%	NTSC	
Power Consumption	Total 4.491W (Max.) @ cell 0.891 W (Max.), BL 3.6W (Max.)		(1)
Special Function Support	G-sync (DD) Free-sync (60 Hz ~ 40 Hz)		

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS = 3.3 V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = 25 ± 2 °C, whereas mosaic pattern is displayed.

2. MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
Module Size	Horizontal (H)	350.36	350.66	350.96	mm	
	Vertical (V) (w/o PCB)	205.04	205.34	205.64	mm	(1) (2)
	Thickness (T) (w/o PCB)	-	2.45	2.60	mm	(2)
	Horizontal	-	344.16	-	mm	
Active Area	Vertical	-	193.59	-	mm	
	Weight	-	293	304	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Dimensions are measured by caliper.

Note (3) Panel thickness is measured with calipers clamping mylar or tape tightly

2.1 CONNECTOR TYPE

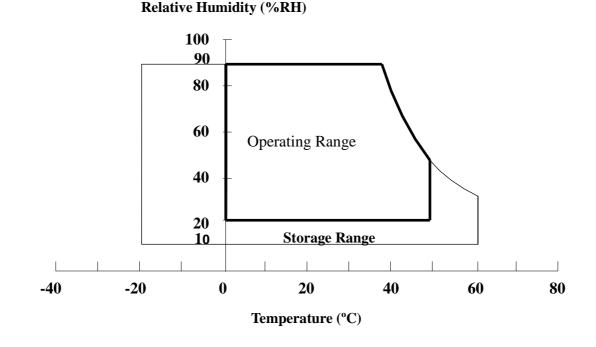
Please refer Appendix Outline Drawing for detail design.

Connector Part No.: IPEX-20455-030E-76

User's connector Part No: IPEX-20453-030T-03

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT


ltem	Sumbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Unit		
Storage Temperature	T _{ST}	-20	+60	٥C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	

Note (1) (a) 90 %RH Max. (Ta < 40 °C).

(b) Wet-bulb temperature should be 39 °C Max.

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

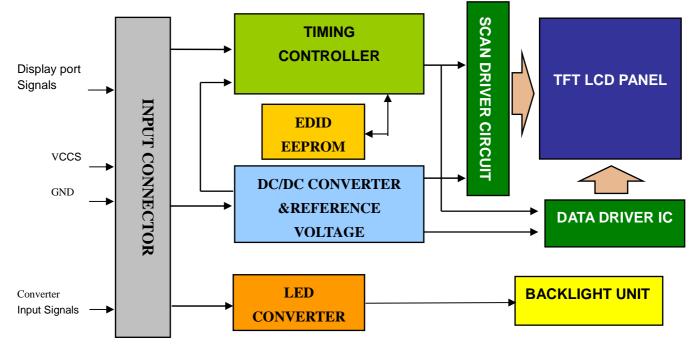
3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

ltem	Symbol	Va	lue	Unit	Note	
	Cymbol	Min.	Min. Max.		Note	
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)	
Converter Input Voltage	LED_VCCS	-0.3	26	V	(1)	
Converter Control Signal Voltage	LED_PWM,	-0.3	5	V	1)	
Converter Control Signal Voltage	LED_EN	-0.3	5	V	(1)	

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

Version 3.0


7 March 2019

7/48

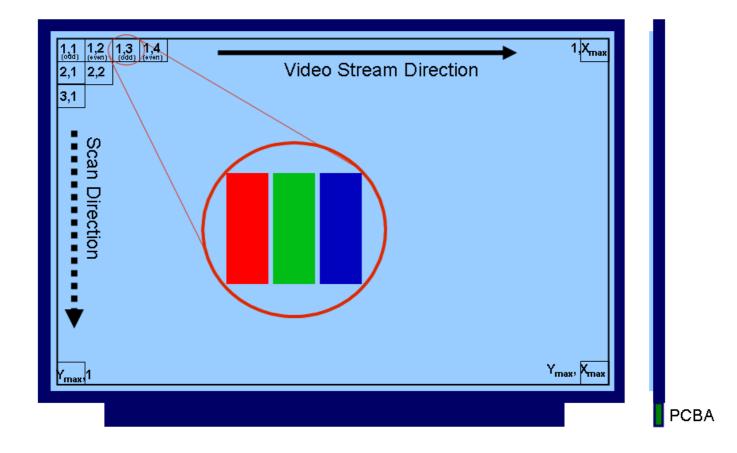
4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	NC	No Connection (Reserved for LCD test)	
2	H_GND	High Speed Ground	
3	ML1-	Complement Signal-Lane 1	
4	ML1+	True Signal-Main Lane 1	
5	H_GND	High Speed Ground	
6	ML0-	Complement Signal-Lane 0	
7	ML0+	True Signal-Main Lane 0	
8	H_GND	High Speed Ground	
9	AUX+	True Signal-Auxiliary Channel	
10	AUX-	Complement Signal-Auxiliary Channel	
11	H_GND	High Speed Ground	
12	VCCS	Power Supply +3.3 V (typical)	
13	VCCS	Power Supply +3.3 V (typical)	
14	NC	No Connection (Reserved for LCD test)	
15	GND	Ground	
16	GND	Ground	
17	HPD	Hot Plug Detect	
18	BL_GND	BL Ground	
19	BL_GND	BL Ground	
20	BL_GND	BL Ground	
21	BL_GND	BL Ground	
22	LED_EN	BL_Enable Signal of LED Converter	
\/		7 March 0040	0 / 40


Version 3.0

7 March 2019

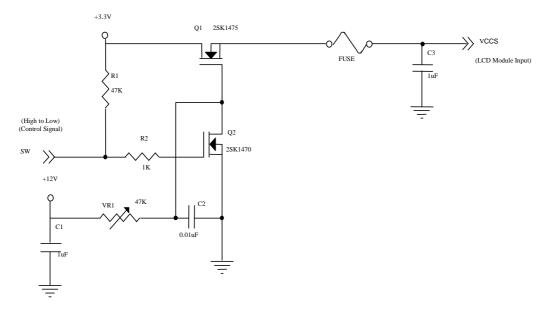
23	LED_PWM	PWM Dimming Control Signal of LED Converter	
24	NC	No Connection (Reserved for LCD test)	
25	NC	No Connection (Reserved for LCD test)	
26	LED_VCCS	BL Power	
27	LED_VCCS	BL Power	
28	LED_VCCS	BL Power	
29	LED_VCCS	BL Power	
30	NC	No Connection (Reserved for LCD test)	

Note (1) The first pixel is odd as shown in the following figure.

7 March 2019

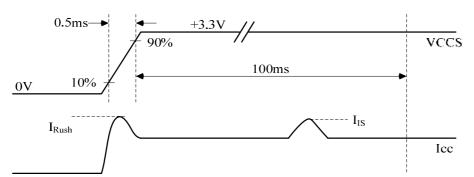
4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

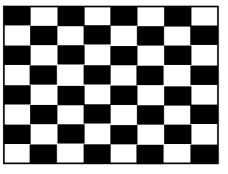

Parameter		Symbol	Value			Unit	Note	
		Symbol	Min.	Тур.	Max.	Unit	NOLE	
Power Supply Voltag	ge		VCCS	3.0	3.3	3.6	V	(1)
HPD	High	Level	-	2.25	-	2.75	V	(5)
прр	Low	Level	-	0	-	0.4	V	(5)
HPD Impedance		R _{HPD}	30K			ohm	(5)	
Ripple Voltage			V _{RP}	-	50	-	mV	(1)
Inrush Current			I _{RUSH}	-	-	1.5	А	(1),(2)
		Mosaic		-	240	270	mA	(3)a
Power Supply Current Black		Black	lcc	-	220	250	mA	(3)
		Green Pattern		-	400	426	mA	(3)b
Power per EBL WG		P_{EBL}	-	2.691	-	W	(4)	

Note (1) The ambient temperature is $Ta = 25 \pm 2 \ ^{\circ}C$.

Note (2) $I_{\mbox{\scriptsize RUSH}}$ the maximum current when VCCS is rising


 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.



VCCS rising time is 0.5ms

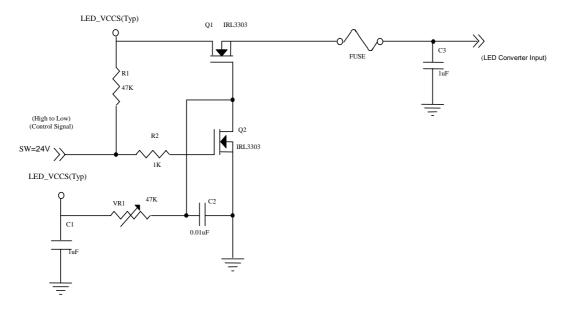
Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

a. Mosaic Pattern

Active Area

b. The solid pattern is the largest one of R/G/B pattern.

- Note (4) The specified power are the sum of LCD panel electronics input power and the converter input power. Test conditions are as follows.
 - (a) VCCS = 3.3 V, Ta = 25 \pm 2 °C, f_v = 60 Hz,
 - (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt.
 - (c) Luminance: 60 nits.
- Note (5) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information.

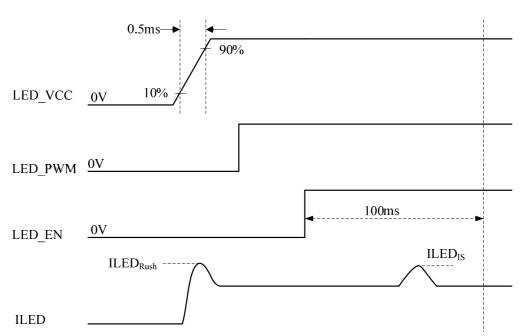

4.3.2 LED CONVERTER SPECIFICATION

Derer		Current of		Value		l la it	Note
Parar	neter	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Input pow	LED_Vccs	5.0	12.0	21.0	V		
Converter Inrush Cu	irrent	ILED _{RUSH}	-	-	1.5	А	(1)
LED_EN Control	Backlight On		2.2	-	5.0	V	(4)
Level	Backlight Off		0	-	0.6	V	(4)
LED_EN Impedance		R _{LED_EN}	30K	-		ohm	(4)
PWM Control Level	PWM High Level		2.2	-	5.0	V	(4)
PVVIVI CONTOI Lever	PWM Low Level		0	-	0.6	V	(4)
PWM Im	pedance	R _{PWM}	30K -	-		ohm	(4)
PWM Control Duty F	Ratio		5	-	100	%	(5)
PWM Control F Voltage	VPWM_pp	-	-	100	mV		
PWM Control Frequ	f _{PWM}	190	-	1K	Hz	(2)	
LED Power Current	LED_VCCS =Typ.	ILED	-	270	300	mA	(3)

Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

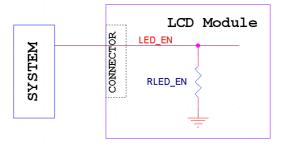
ILED_{IS}: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = $25 \pm 2 \circ C$, $f_{PWM} = 200 \text{ Hz}$, Duty=100%.


Version 3.0

7 March 2019

PRODUCT SPECIFICATION

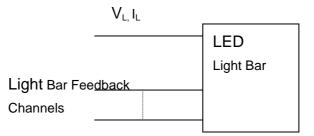

VLED rising time is 0.5ms

Note (2) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency f_{PWM} should be in the range $(N+0.33) * f \le f_{PWM} \le (N+0.66) * f$ N: Integer $(N \ge 3)$ f: Frame rate

- Note (3) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.
- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. For example, the figure below describes the equivalent pull down impedance of LED_EN (If it exists). The rest pull down impedances of other signals (eg. HPD, PWM ...) are in the same concept.

Note (5) If the cycle-to-cycle difference of PWM duty exceeds 0.1%, especially when the PWM duty is low, slight brightness change might be observed.


7 March 2019

4.3.3 BACKLIGHT UNIT

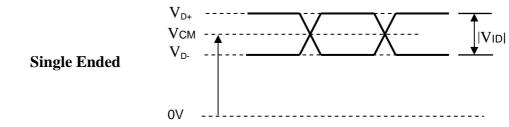
					Та	a = 25 ± 2 °C	
Demonster	Oursels of	Value				Nata	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
LED Light Bar Power Supply Voltage	VL	26	29	30	V	(4)(0)(D-1-4000())	
LED Light Bar Power Supply Current	IL	-	95	-	mA	(1)(2)(Duty100%)	
Power Consumption	PL	2.470	2.755	2.85	W	(3)	
LED Life Time	L _{BL}	15000	-	-	Hrs	(4)	

Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

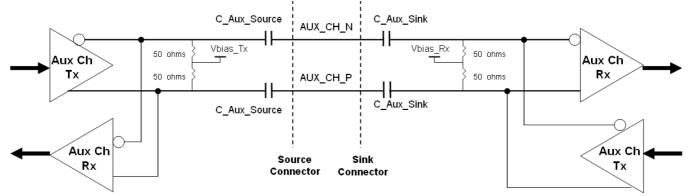
Note (3) $PL = IL \times VL$ (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = $25 \pm 2 \text{ oC}$ and IL = 19 mA (Per EA) until the brightness becomes $\leq 50\%$ of its original value.

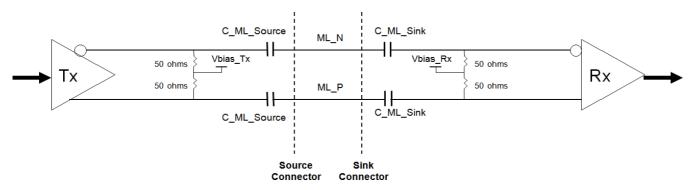


4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS

4.4.1 DISPLAY PORT INTERFACE


Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1) (4)
AUX AC Coupling Capacitor	C_Aux_Source	75		200	nF	(2)
Main Link AC Coupling Capacitor	C_ML_Source	75		200	nF	(3)

Note (1)Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested, please contact us.



(2) Recommended eDP AUX Channel topology is as below and the AUX AC Coupling Capacitor

(C_Aux_Source) should be placed on the source device.

(3) Recommended Main Link Channel topology is as below and the Main Link AC Coupling Capacitor (C_ML_Source) should be placed on the source device.

(4) The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

7 March 2019

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

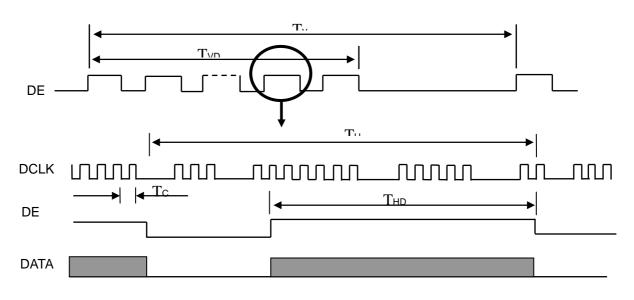
									[Data		al							
	Color				ed					Gre			_				ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Refresh rate 60Hz

4.5 DISPLAY TIMING SPECIFICATIONS

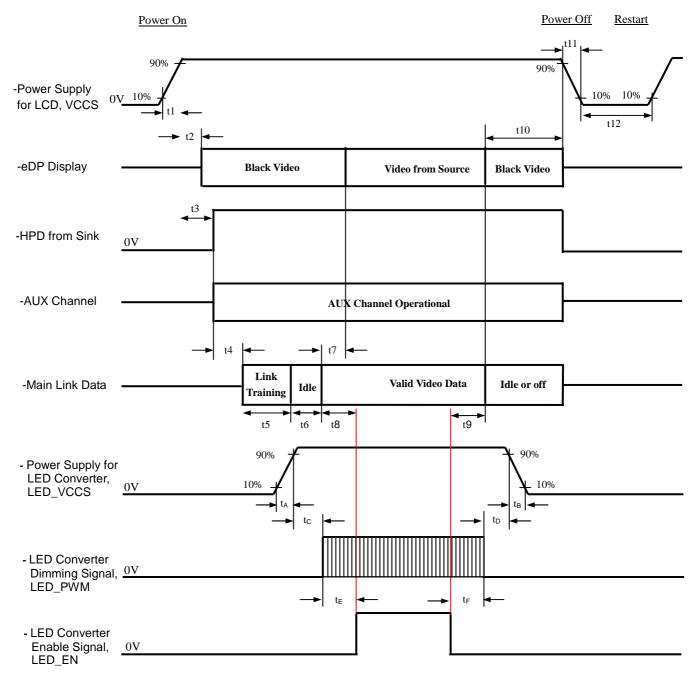
The input signal timing specifications are shown as the following table and timing diagram.


Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note		
DCLK	Frequency	1/Tc	152.1	152.84	153.6	MHz	-		
	Vertical Total Time	ΤV	1128	1132	1136	ТН	-		
	Vertical Active Display Period	TVD	1080	1080	1080	ТН	-		
	Vertical Active Blanking Period	TVB	TV-TVD	52	TV-TVD	ТН	-		
DE	Horizontal Total Time	TH	2240	2250	2360	Тс	-		
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	-		
	Horizontal Active Blanking Period	THB	TH-THD	330	TH-THD	Тс	-		

Refresh rate 40Hz (Free sync mode)

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	101.33	101.89	102.4	MHz	(1)
	Vertical Total Time	ΤV	1128	1132	1136	TH	(1)
	Vertical Active Display Period	TVD	1080	1080	1080	TH	(1)
DE	Vertical Active Blanking Period	TVB	TV-TVD	52	TV-TVD	TH	(1)
DE	Horizontal Total Time	ТН	2240	2250	2260	Тс	(1)
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	(1)
	Horizontal Active Blanking Period	THB	TH-THD	330	TH-THD	Тс	(1)

Note (1) The panel can operate at 60Hz normal mode and power saving mode, respectively. All reliability tests are based on specific timing of 60Hz refresh rate. We can only assure the panel's electrical function at power saving mode.


INPUT SIGNAL TIMING DIAGRAM

Version 3.0

4.6 POWER ON/OFF SEQUENCE

7 March 2019

Timing Specifications:

Parameter	Description	Reqd. By	Va Min	lue Max	Unit	Notes
t1	Power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t2	Delay from LCD,VCCS to black video generation	Sink	0	200	ms	Automatic Black Video generation prevents display noise until valid video data is received from the Source (see Notes:2 and 3 below)
t3	Delay from LCD,VCCS to HPD high	Sink	0	200	ms	Sink AUX Channel must be operational upon HPD high (see Note:4 below)
t4	Delay from HPD high to link training initialization	Source	0	-	ms	Allows for Source to read Link capability and initialize
t5	Link training duration	Source	0	-	ms	Dependant on Source link training protocol
t6	Link idle	Source	0	-	ms	Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization
t7	Delay from valid video data from Source to video on display	Sink	0	50	ms	Max value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatic Black Video
t8	Delay from valid video data from Source to backlight on	Source	80	-	ms	Source must assure display video is stable*: Recommended by INX. To avoid garbage image.
t9	Delay from backlight off to end of valid video data	Source	50	-	ms	Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image.
t10	Delay from end of valid video data from Source to power off	Source	0	500	ms	Black video will be displayed after receiving idle or off signals from Source
t11	VCCS power rail fall time, 90% to 10%	Source	0.5	10	ms	-
t12	VCCS Power off time	Source	500	-	ms	-
t _A	LED power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t _B	LED power rail fall time, 90% to 10%	Source	0	10	ms	-
t _C	Delay from LED power rising to LED dimming signal	Source	1	-	ms	-
Version 3.0	0	7 March	2019_			19 / 48

t	D	Delay from LED dimming signal to LED power falling	Source	1	-	ms	-
t	E	Delay from LED dimming signal to LED enable signal	Source	(0)	-	ms	-
t	t _F	Delay from LED enable signal to LED dimming signal	Source	(0)	-	ms	-

Note (1) Please don't plug or unplug the interface cable when system is turned on.

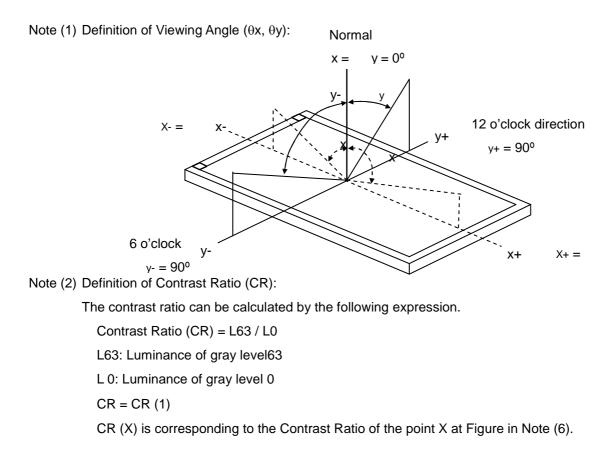
Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions:

- Upon LCDVCC power-on (within T2 max)

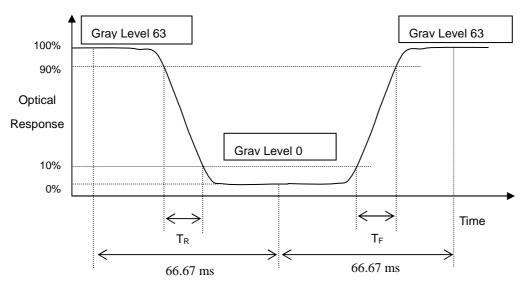
- When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)
- Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes.
- Note (4) The Sink must support AUX Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS


Item	Symbol	Value	Unit					
Ambient Temperature	Та	25±2	°C					
Ambient Humidity	Ha	50±10	%RH					
Supply Voltage	V _{cc}	3.3	V					
Input Signal	According to typical v	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
LED Light Bar Input Current	ΙL	95	mA					

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

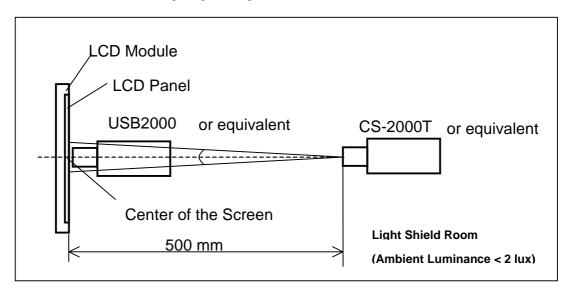

5.2 OPTICAL SPECIFICATIONS

lte	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		500	700	-	-	(2), (5),(7)
Response Time	.	T _R		-	11	14	ms	(3),(7)
		T _F		-	9	11	ms	
Average Lumin	ance of White	Lave	θ _x =0°, θ _Y =0°	255	300	-	cd/m ²	(4), (6),(7)
	Red	Rx	Viewing Normal Angle		0.640		-	
		Ry	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		0.330		-	
	Green	Gx	Viewing Normal Angle		0.300		-	(1),(7)
Color Chromaticity	Green	Gy		Тур –	0.600	Тур +	-	
	Blue	Bx		0.03	0.150	0.03	-	
	Dide	By			0.060		-	
	White	Wx			0.313		-	
	VVIIICE	Wy			0.329		-	
	Horizontal	θ x +		80	89	-		
	TIONZONIA	θ _x -	CR≥10	80	89	-	Dog	(1),(5),
Chromaticity Viewing Angle White Variation	Vertical	θ_{Y} +	CR210	80	89	-	Deg.	(7)
	ventical	θ _Y -		80	89	-		
White Variation		δW_{5p}	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	1.25	1.4	-	(5),(6), (7)
	White	FSw	0.00.000			(0.03)	Nits/H	(1),(5),
(Free sync)	Gray(50%)	FS _G	θ _x =0°, θ _Y =0°			(0.04)	Z	(7),(8)
(G sync)		GS	θ _x =0°, θ _Y =0°			(≦ 30Hz: -43) (≧ 40Hz:	dB	(1),(5), (7),(9)
						-45)		

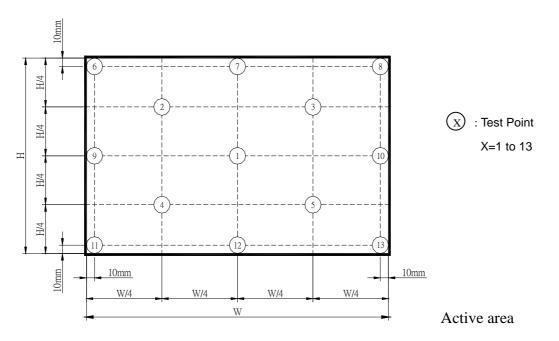
Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Definition of Average Luminance of White (LAVE):

Measure the luminance of White at 5 points


 $L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)


Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points $\delta W_{5p} = Maximum [L(1) \sim L(5)] / Minimum [L(1) \sim L(5)]$ $\delta W_{13p} = Maximum [L(1) \sim L(13)] / Minimum [L(1) \sim L(13)]$

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

PRODUCT SPECIFICATION

Note(8) Free Sync (FS):

FS= | L(60)-L(40) | / (F(60)-F(40))

L(x): Luminance of x Hz

F(x): x Hz frame rate

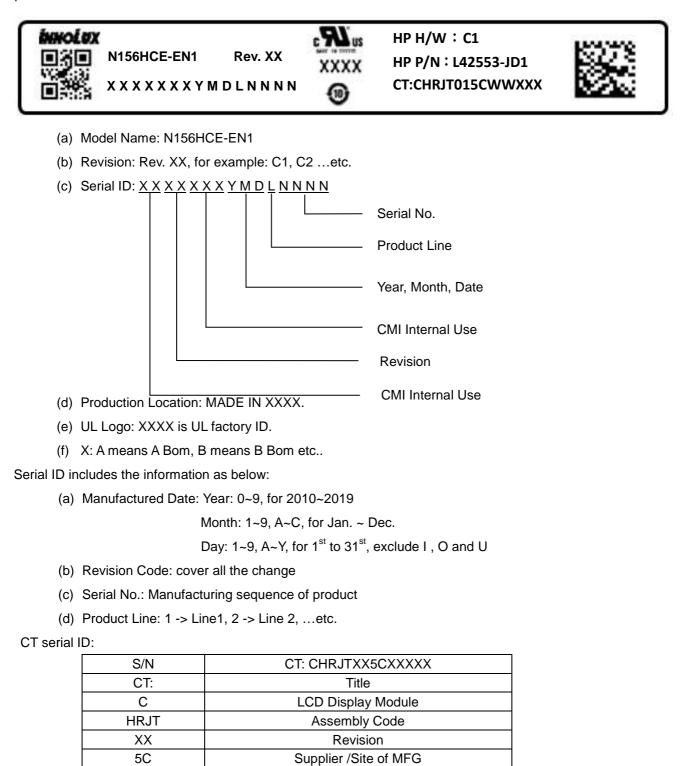
Note(9) G-sync describes the flicker under the 50% gray level at the lowest frame rate. The flicker defind by JEITA method.

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	60ºC, 240 hours	
Low Temperature Storage Test	-20ºC, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour ↔ 60°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	50ºC, 240 hours	(1) (2)
Low Temperature Operation Test	0ºC, 240 hours	(, , , , , , , , , , , , , , , , , , ,
High Temperature & High Humidity Operation Test	50℃, 80% RH, 240 hours	
ESD Test (Operation)	150pF, 330 Ω , 1sec/cycle Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±15KV	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of $\pm X, \pm Y, \pm Z$	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

Note (1) criteria : Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour


Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

7. PACKING

7.1 MODULE LABEL

The barcode nameplate is pasted or printed on each module as illustration, and its definitions are as following explanation.

WW

XXX

7 March 2019

Week/Year of MFG

Serial number. From 000000 to 999999

7.2 CARTON

(1)Box Dimensions : 500(L)*370(W)*270(H) (2)20 Modules/Carton

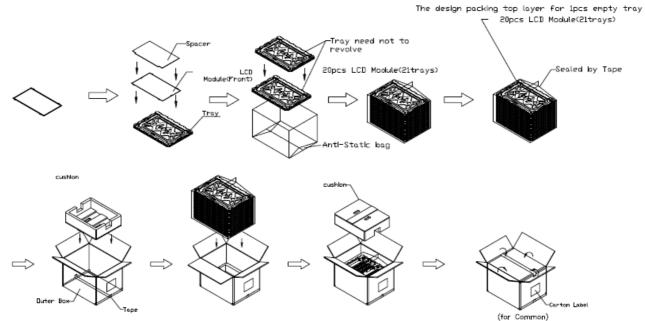
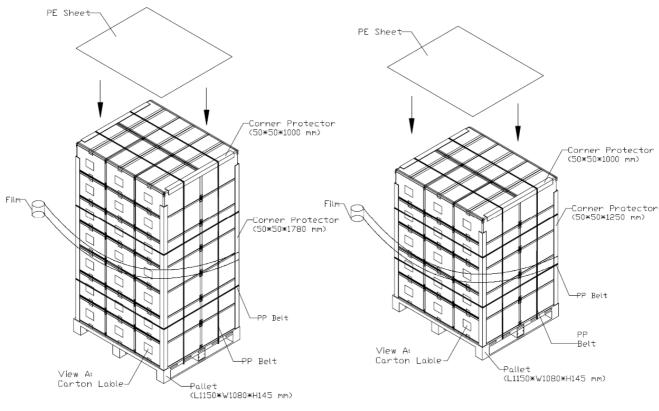



Figure. 7-2 Packing method

7.3 PALLET

Sea & Land Transportation

Air Transportation

Figure. 7-3 Packing method

7.4 UN-PACKAGING METHOD

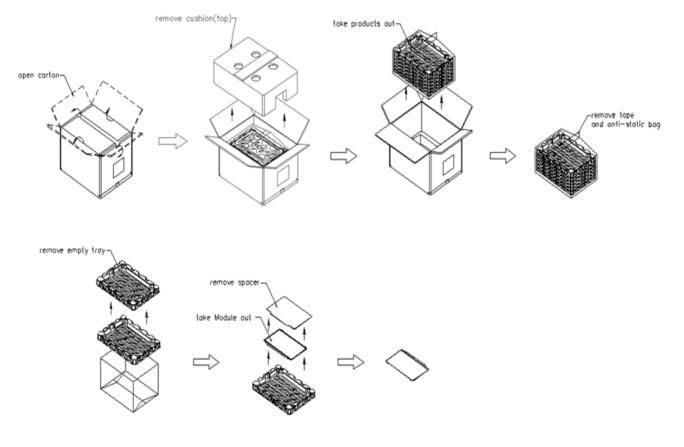


Figure. 7-4 un-packing method

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMIS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.

7 March 2019

Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the

VESA Plug & Display and FPDI standards.

	Byte # (hex)	Field Name and Comments	Value (hex)	Value (binary)
0	00	Header	00	00000000
1	01	Header	FF	11111111
2	02	Header	FF	11111111
3	03	Header	FF	11111111
4		Header	FF	11111111
5	05	Header	FF	11111111
6	06	Header	FF	11111111
7	07	Header	00	00000000
8	08	EISA ID manufacturer name ("CMN")	0D	00001101
9	09	EISA ID manufacturer name	AE	10101110
10	0A	ID product code (LSB)	E8	11101000
11	0B	ID product code (MSB)	15	00010101
12	0C	ID S/N (fixed "0")	00	00000000
13	0D	ID S/N (fixed "0")	00	00000000
14	0E	ID S/N (fixed "0")	00	00000000
15	0F	ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture (fixed week code)	1F	00011100
17	11	Year of manufacture (fixed year code)	1C	00011100
18	12	EDID structure version ("1")	01	00000001
19	13	EDID revision ("4")	04	00000100
20	14	Video I/P definition ("Digital")	95	10010101
21	15	Active area horizontal ("34.416cm")	22	00100010
22	16	Active area vertical ("19.359cm")	13	00010011
23	17	Display Gamma (Gamma = "2.2")	78	01111000
24	18	Feature support ("RGB, Continous")	03	00000011
25	19	Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	EE	11101110
26	1A	Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	95	10010101
27	1B	Rx=0.64	A3	10100011
28		Ry=0.33	54	01010100
29		Gx=0.3	4C	01001100
30	1E	Gy=0.6	99	10011001
31	1F	Bx=0.15	26	00100110
32	20	By=0.06	0F	00001111
33	21	Wx=0.313	50	01010000
34	22	Wy=0.329	54	01010100
35	23	Established timings 1	00	00000000
36	24	Established timings 2	00	0000000
37	25	Manufacturer's reserved timings	00	0000000
38	26	Standard timing ID # 1	01	00000001
39	20	Standard timing ID # 1	01	0000000
40	28	Standard timing ID # 2	01	0000000
40	20	Standard timing ID # 2	01	0000000
	20			

PRODUCT SPECIFICATION

	1			
42	2A	Standard timing ID # 3	01	00000001
43	2B	Standard timing ID # 3	01	0000001
44	2C	Standard timing ID # 4	01	00000001
45	2D	Standard timing ID # 4	01	0000001
46	2E	Standard timing ID # 5	01	0000001
47	2F	Standard timing ID # 5	01	0000001
48	30	Standard timing ID # 6	01	0000001
49	31	Standard timing ID # 6	01	00000001
50	32	Standard timing ID # 7	01	0000001
51	33	Standard timing ID # 7	01	0000001
52	34	Standard timing ID # 8	01	00000001
53	35	Standard timing ID # 8	01	0000001
54	36	Detailed timing description # 1 Pixel clock ("152.84MHz")	B4	10110100
55	37	# 1 Pixel clock (hex LSB first)	3B	00111011
56	38	# 1 H active ("1920")	80	10000000
57	39	# 1 H blank ("330")	4A	01001010
58	ЗA	# 1 H active : H blank	71	01110001
59	3B	# 1 V active ("1080")	38	00111000
60	3C	# 1 V blank ("52")	34	00110100
61	3D	# 1 V active : V blank	40	01000000
62	3E	# 1 H sync offset ("80")	50	01010000
63	3F	# 1 H sync pulse width ("54")	36	00110110
64	40	# 1 V sync offset : V sync pulse width ("6 : 8")	68	01101000
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width	00	00000000
66	42	# 1 H image size ("344 mm")	58	01011000
67	43	# 1 V image size ("193 mm")	C1	11000001
68	44	# 1 H image size : V image size	10	00010000
69	45	# 1 H boarder ("0")	00	00000000
70	46	# 1 V boarder ("0")	00	00000000
71	47	Non-interlaced, Normal Display, Digital separate, Positive Hsync, Negative Vsync	1A	00011010
72	48	Detailed timing description # 2 Pixel clock ("101.89"MHz, According to VESA CVT Rev1.4)	CD	11001101
73	49	# 2 Pixel clock (hex LSB first)	27	00100111
74	4A	# 2 H active ("1920")	80	1000000
75	4B	# 2 H blank ("330")	4A	01001010
76	4C	# 2 H active : H blank	71	01110001
77	4D	# 2 V active ("1080")	38	00111000
78	4E	# 2 V blank ("52")	34	00110100
79	4F	# 2 V active : V blank	40	01000000
80	50	# 2 H sync offset ("80")	50	01010000
81	51	# 2 H sync pulse width ("54")	36	00110110
82	52	# 2 V sync offset : V sync pulse width ("6 : 8")	68	01101000
83	53	# 2 H sync offset : H sync pulse width : V sync offset : V sync width	00	00000000
84	54	# 2 H image size ("344 mm")	58	01011000
85	55	# 2 V image size ("193 mm")	C1	11000001
86	56	# 2 H image size : V image size	10	00010000

Version 3.0

7 March 2019

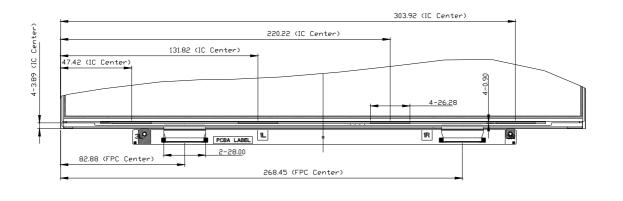
32 / 48

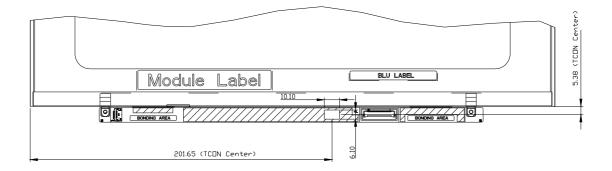
PRODUCT SPECIFICATION


87	57	# 2 H boarder ("0")	00	00000000
88	58	# 2 V boarder ("0")	00	00000000
89	59	Non-interlaced, Normal Display, Digital separate, Positive Hsync, Negative Vsync	1A	00011010
90	5A	NA	00	00000000
91	5B	NA	00	00000000
92	5C	NA	00	00000000
93	5D	NA	00	00000000
94	5E	NA	00	00000000
95	5F	NA	00	00000000
96	60	NA	00	00000000
97	61	NA	00	00000000
98	62	NA	00	00000000
99	63	NA	00	00000000
100	64	NA	00	00000000
101	65	NA	00	00000000
102	66	NA	00	00000000
103	67	NA	00	00000000
104	68	NA	00	00000000
105	69	NA	00	00000000
106	6A	NA	00	00000000
107	6B	NA	00	00000000
108	6C	Detailed Timing Description #4	00	00000000
109	6D	Flags	00	00000000
110	6E	Reserved	00	00000000
111	6F	For Brightness Table and Power Consumption	02	00000010
112	70	Flags	00	00000000
113	71	PWM % [7:0] @ Step 0 = 5%	0C	00001100
114	72	PWM % [7:0] @ Step 5 = 20%	33	00110011
115	73	PWM % [7:0] @ Step 10 = 100%	FF	11111111
116	74	Nits [7:0] @ Step 0 = 15nits	0F	00001111
117	75	Nits [7:0] @ Step 5 = 60nits	3C	00111100
118	76	Nits [7:0] @ Step 10 = 300nits	96	10010110
119	77	Panel Electronics Power @32x32 Chess Pattern =825mW	14	00010100
120	78	Backlight Power @60 nits =606mW	0F	00001111
121	79	Backlight Power @Step 10 =3030mW	25	00100101
122	7A	Nits @ 100% PWM Duty =300nit	96	10010110
123	7B	Flags	00	00000000
124	7C	Flags	00	00000000
125	7D	Flags	00	00000000
126	7E	Extension flag	00	00000000
127	7F	Checksum	6F	01101111

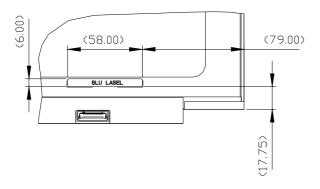
Version 3.0

7 March 2019




Appendix. OUTLINE DRAWING

7 March 2019



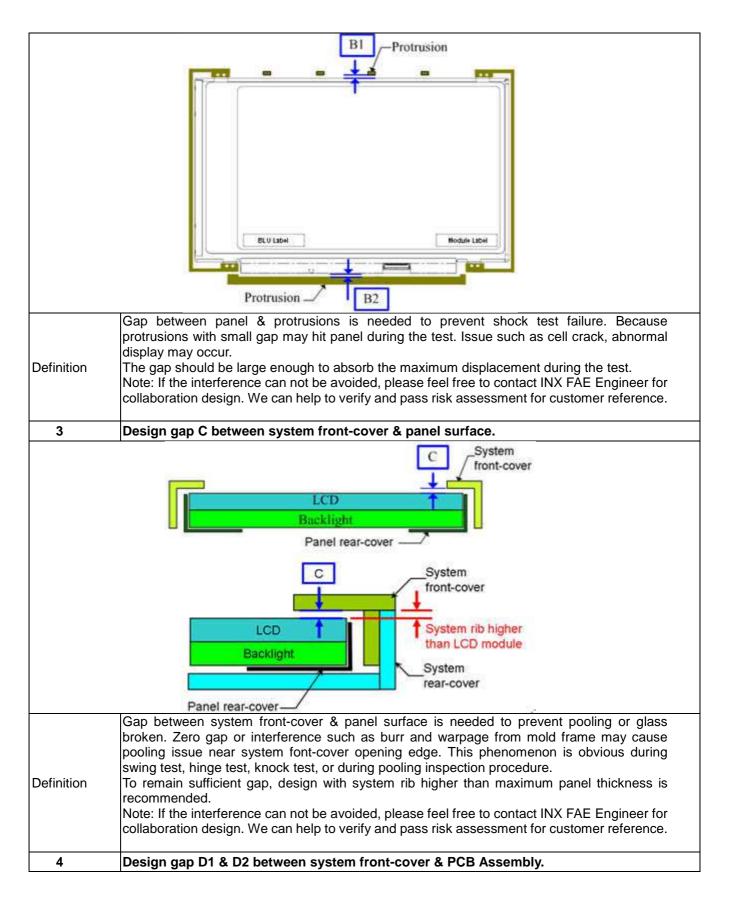
NOTES :

- IN URDER TU AVUID ABNURMAL DISPLAY, POOLING AND WHITE SPOT, NO OVERLAPPING IS SUGGESTED AT CABLES, ANTENNAS, CAMERA, WLAN, WAN OR FOREIGN OBJECTS OVER FPC/COF, T-CON AND VR LOCATIONS.
 LVDS/EDP CONNECTOR IS MEASURED AT PINI AND ITS MATING LINE.
 MODULE FLATNESS SPEC 0.5 mm MAX.
 "()" MARKS THE REFERENCE DIMENSION.
 BLU LABEL IS INX INTERNAL USE: 5-1. FOR INX NGB & TAIWAN 1. IN ORDER TO AVOID ABNORMAL DISPLAY, POOLING AND WHITE SPOT,

6.LCD HIGHEST PORTION MUST BE TOP POLARIZER AND OTHER LCM MATERIALS MUST BE LOWER THAN TOP POLARIZER. THE SOP SHOULD REFER TO "DN0566762" IN INX

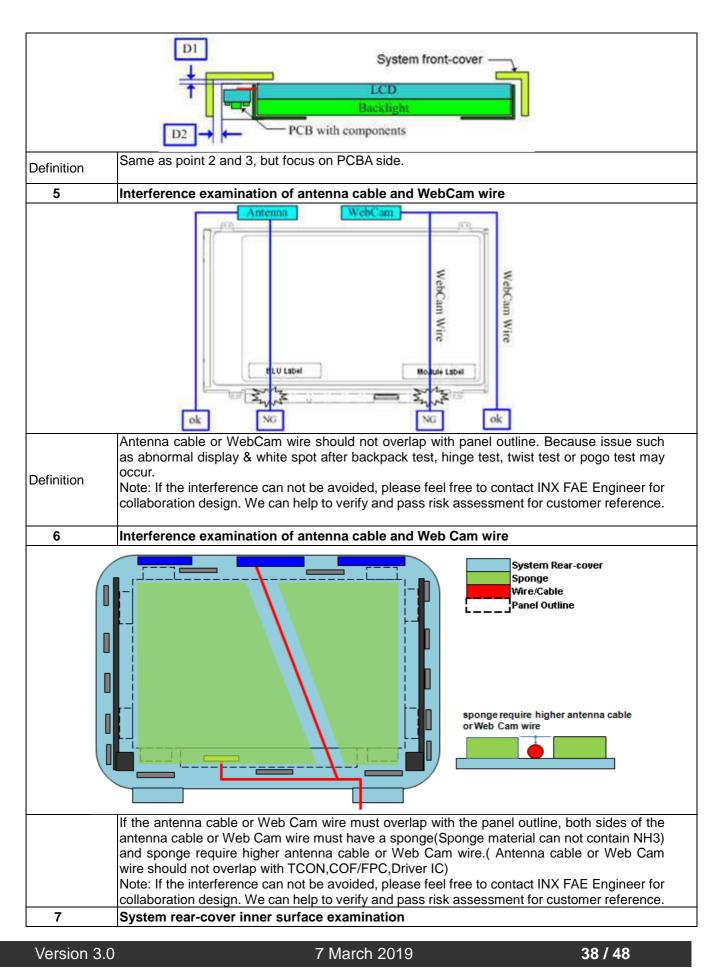
Note. Dimensions measuring instruments as below,

- 1. Length/ Width/Thickness : Caliper
- 2. Height : Height gauge

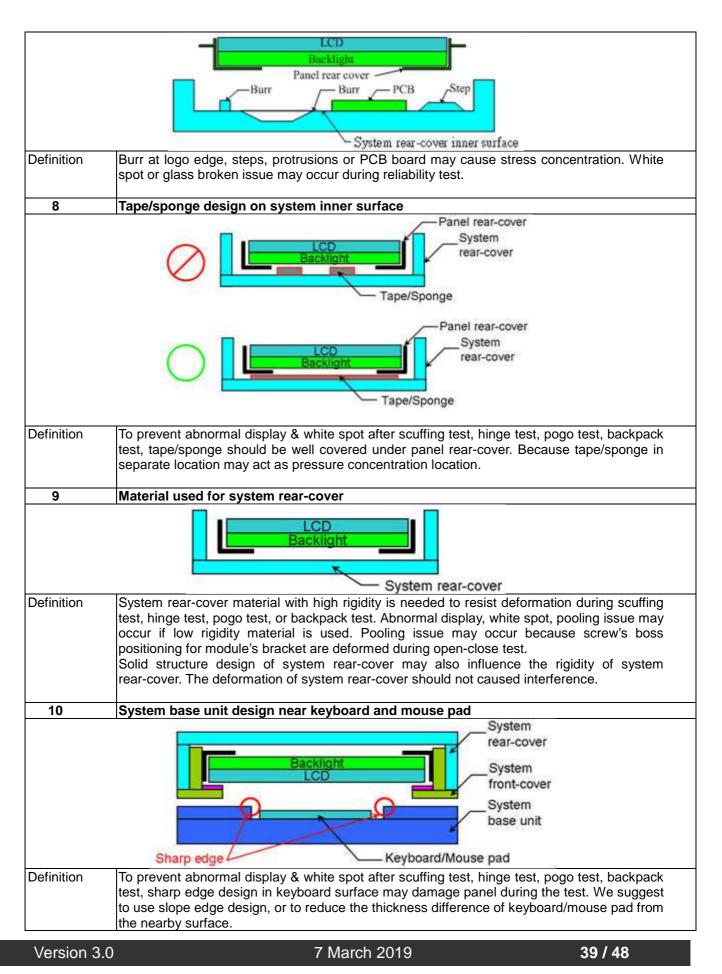

```
Version 3.0
```


Appendix. SYSTEM COVER DESIGN GUIDANCE

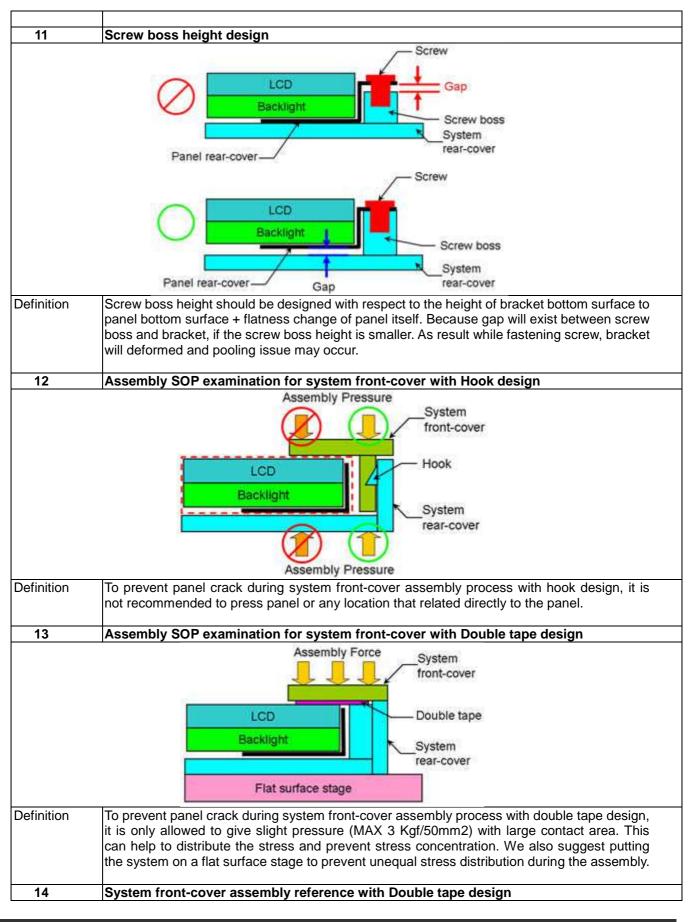
0.	Permanent deformation of system cover after reliability test		
	System front-cover System rear-cover		
	System front-cover System rear-cover		
Definition	System cover including front and rear cover may deform during reliability test. Permanent deformation of system front and rear cover after reliability test should not interfere with panel. Because it may cause issues such as pooling, abnormal display, white spot, and also cell crack. Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.		
1.	Design gap A between panel & any components on system rear-cover		
	Max. Thickness		
Definition	Gap between panel's maximum thickness boundary & system's inner surface components such as wire, cable, extrusion is needed for preventing from backpack or pogo test fail. Because zero gap or interference may cause stress concentration. Issues such as pooling, abnormal display, white spot, and cell crack may occur. Maximum flatness of panel and system rear-cover should be taken into account for gap design.		
	Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.		

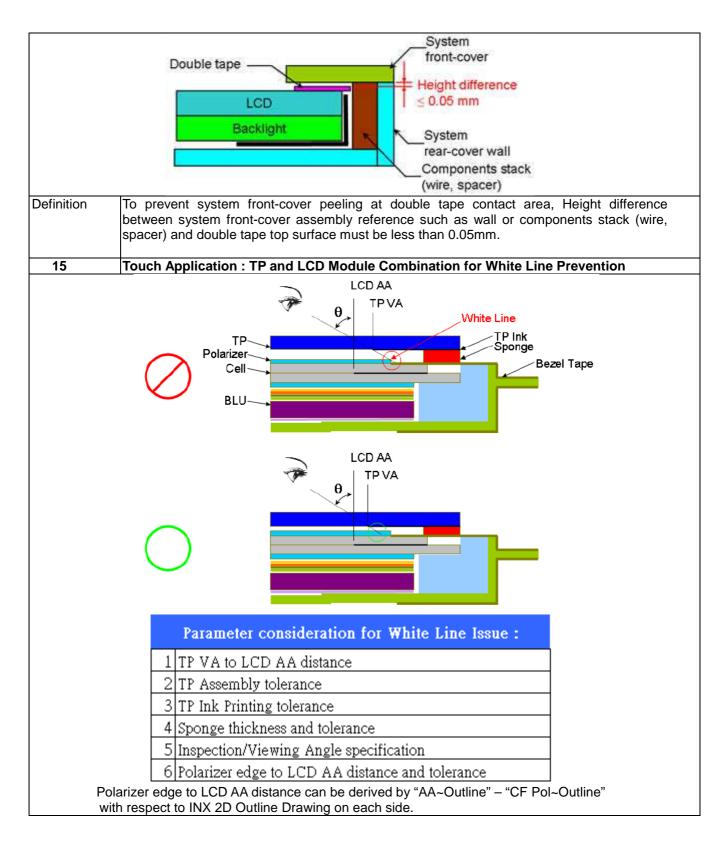


Version 3.0


7 March 2019

37 / 48

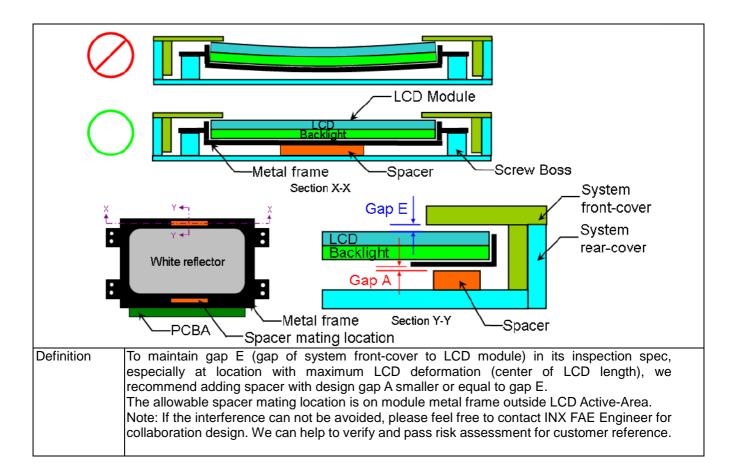




Version 3.0

7 March 2019

40 / 48

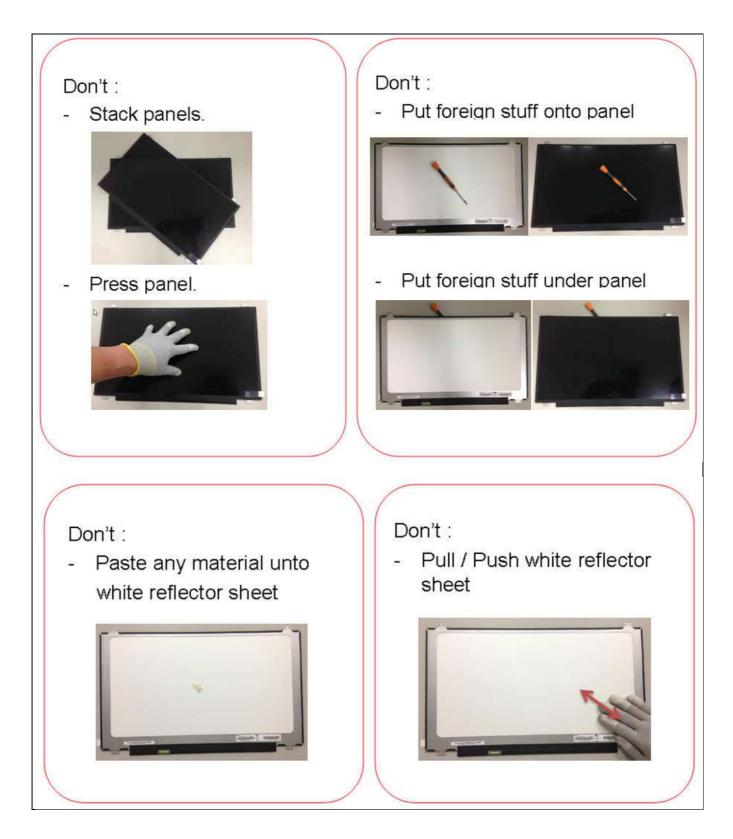


	AA~Outline				
	Polarizer edge ← Active Area 월월				
	and Charles Andrea Charles and				
Definition	For using in Touch Application: to prevent White Line appears between TP and LCD module				
	combination, the maximum inspection angle location must not fall onto LCD polarizer edge,				
	otherwise light line near edge of polarizer will be appear. Parameters such as TP VA to LCD AA distance, TP assembly tolerance, TP Ink printing				
	tolerance, Sponge thickness and tolerance, and Maximum Inspection/Viewing Angle, must				
	be considered with respect to LCD module's Polarizer edge location and tolerance. This				
	consideration must be taken at all four edges separately.				
	The goal is to find parameters combination that allow maximum inspection angle falls inside polarizer black margin area.				
	Note: Information for Polarizer edge location and its tolerance can be derived from INX 2D				
	Outline Drawing ("AA ~Outline" - "CF Pol~Outline").				
	Note: Please feel free to contact INX FAE Engineer. By providing value of parameters above				
	on each side, we can help to verify and pass the white line risk assessment for customer reference.				
16	16 Color of system front-cover material				
	Light Leakage				
	System				
	LCD front-cover				
Backlight System					
					rear-cover
	System				
LCD I front-cover					
Backlight System					
	rear-cover				
Definition	ion To prevent light leakage is seen at system front-cover due to material transparency, we				
suggest using dark color material (black) for system front-cover design.					
47	Inspection spec of gap E between system front source to LCD module surface				
17	Inspection spec of gap E between system front-cover to LCD module surface				

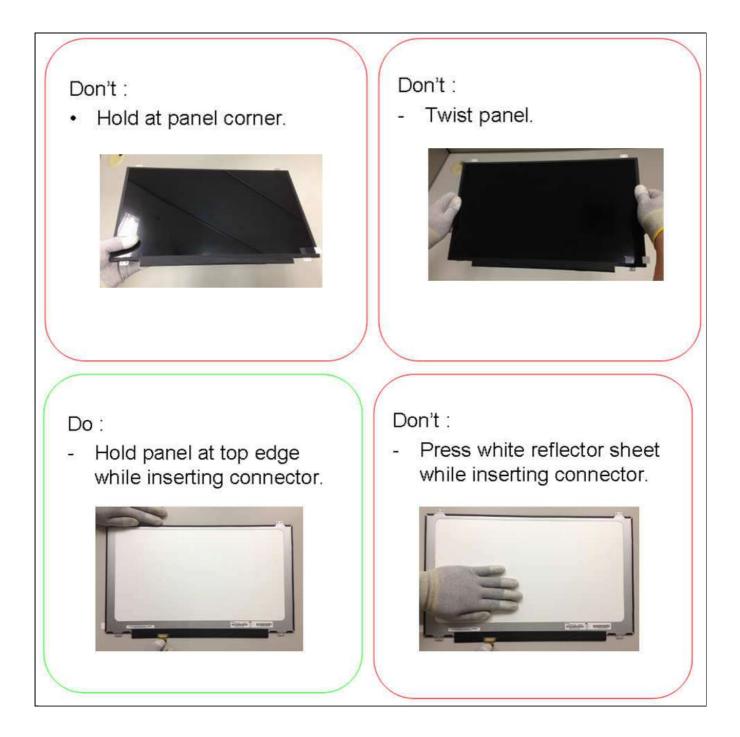
7 March 2019

Appendix. LCD MODULE HANDLING MANUAL

Purpose	incorrect har This manual Any person	s prepared to prevent panel dyst ndling procedure. provides guide in unpacking and han which may contact / related with pan- al to prevent panel loss.	ndling steps.
1.	Unpacking		
		Open carton	Remove EPE Cushion
Oper	n plastic bag	Cut Adhesive Tape	Remove EPE Cushion
2.	Panel Lifting		



Version 3.0


7 March 2019

7 March 2019

7 March 2019

Do :

 Remove panel protector film starts from pull tape

Don't :

- Remove panel protector film From film another side.

- Touch or Press PCBA Area.

