INNOLUX DISPLAY CORPORATION # SPECIFICATION | Customer: | | | | | | | | | | |---------------------------|---|--|--|--|--|--|--|--|--| | Model Name: | ZJ035BF-01C | | | | | | | | | | Date: | 2025/05/28 | | | | | | | | | | Version: | 0.1 | | | | | | | | | | _ | ■ Preliminary Specification□ Final Specification | | | | | | | | | | For Customer's Acceptance | | | | | | | | | | | Approved by | Comment | Approved by | Reviewed by | Prepared by | |-------------|-------------|-------------| | | | | | | | | | | | | # **CONTENTS** | No. | ITEM | PAGE | |-----|----------------------------|------| | 0 | RECORD OF REVISION | 3 | | 1 | FEATURES | 4 | | 2 | GENERAL SPECIFICATIONS | 4 | | 3 | ABSOLUTE MAXIMUM RATINGS | 4 | | 4 | ELECTRICAL CHARACTERISTICS | 6 | | 5 | DC CHARATERISTICS | 8 | | 6 | AC CHARACTERISTICS | 8 | | 7 | OPTICAL CHARATERISTIC | 14 | | 8 | INTERFACE | 16 | | 9 | BLOCK DIAGRAM | 21 | | 10 | QUALITY ASSURANCE | 22 | | 11 | OUTLINE DRAWING | 23 | | 12 | PACKAGE INFORMATION | 24 | | 13 | PRECAUTIONS | 25 | # **RECORD OF REVISIONS** | Revision | Date | Page | Description | |----------|------------|--------|--------------------------| | 0.0 | 2025/03/11 | all | New Creation | | 0.1 | 2025/05/28 | P8-P13 | Update AC CHARATERISTICS | # INNOLUX 群創光電 ### PRODUCT SPECIFICATION #### 1. FEATURES ZJ035BF-01C is a transmissive type color active matrix liquid crystal display (LCD) which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT LCD panel, driver ICs, FPC, backlight unit. #### 2. GENERAL SPECIFICATIONS | Paramete | r | Specifications | Unit | |----------------------|-----------|--|------------------------| | Screen size | | 3.45(Diagonal) | Inch | | Display Format | | 320 RGB x 240 | Dot | | Active area | | 70.08(H) x 52.56(V) | mm | | Dot size | | 73x 219 | um | | Pixel Configuration | | RGB-Stripe | | | Outline dimension | | 76.9(W) x 63.9(H) x 3.26(D) | mm | | Display Mode | | Normally Black | | | Surface Treatment | | Anti-Glare | | | Display Garmut | | NTSC 57% | | | Input Interface | | Digital Parallel 24-bit RGB/SERIAL 8-bit RGB | | | Weight | | 30 | g | | View Angle direction | | 6 o'clock | | | Tomporatura Danga | Operation | -30~80 | $^{\circ}\!\mathbb{C}$ | | Temperature Range | Storage | -30~85 | $^{\circ}\!\mathbb{C}$ | #### 3. ABSOLUTE MAXIMUM RATINGS | Item | Symbol | Condition | Min. | Max. | Unit | Remark | | |---------------|--------|-----------|------|-----------|------|--------|--| | Power Voltage | VCC | GND=0 | -0.3 | 4.0 | V | | | | Input Signal | Vin | GND=0 | -0.3 | VDD+0.3 | V | NOTE | | | Voltage | V in | GIND=0 | -0.3 | VDD+0.3 | V | NOTE | | | Logic Output | Vour | GND=0 | 0.2 | VDD+0.3 | V | NOTE | | | Voltage | Vоит | GIND=0 | -0.3 | ∨ט+טט+0.3 | V | NOTE | | Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above 1. Temp. \leq 60°C, 90% RH MAX. Temp.> 60° C, Absolute humidity shall be less than 90% RH at 60° C 2. #### 4. ELECTRICAL CHARACTERISTICS #### 4.1. Operating conditions: | Parameter | Cumbal | Rating | | | Unit | Condition | |---------------------------|--------|--------|------|------|------|-----------| | | Symbol | Min. | Тур. | Max. | Unit | Condition | | Power Voltage | VCC | 3.0 | 3.3 | 3.6 | V | | | Digital Operation Current | Icc | - | 20 | 28 | mA | | | Inrush Current | Irush | - | - | 260 | mA | Note | Note: I_{RUSH}: The maximum current when VCC is rising. #### VCC rising time is 0.5ms #### 4.2 LightBar driving conditions | | | | , | | | | |-------------------|--------|-------|------|------|------|----------| | Parameter | Symbol | Min. | Тур. | Max. | Unit | Remark | | Light Bar current | ILED | - | 20 | - | mA | | | Power Consumption | | - | 354 | 384 | mW | | | Light Bar voltage | VL | 16.2 | 17.7 | 19.2 | V | Note 1 | | LED Life Time | - | 15000 | - | - | Hr | Note 2,3 | Note 1: There are 1 Groups LED Note 2 : Ta = 25° C Note 3: Brightess to be decreased to 50% of the initial value #### **4.3 POWER ON/OFF SEQUENCE** power on sequence power off sequence #### **5. DC CHARATERISTICS** | Doromotor | Symbol | | Rating | | Unit | Condition | | |---------------------------|-----------------|------------|--------|------|-------|-----------|--| | Parameter | Syllibol | Min. | Тур. | Max. | Offic | Condition | | | Low lovel input veltage | V | 0 | | 0.3 | W | | | | Low level input voltage | V_{IL} | 0 | - | VCC | V | | | | Hight level input voltage | V _{IH} | 0.7
VCC | - | VCC | V | | | #### 6. AC CHARATERISTICS #### **Digital Parallel RGB interface:** | Signal | Item | Symbol | Min | SYNC
mode | DE/
SYNC+DE | Max | Unit | Remark | |---------|----------------|--------|-----|--------------|----------------|-----|------|--------| | Dclk | DCLK Frequency | Tclk | 5 | 5.79 | 6.42 | 8 | MHZ | | | | DCLK Period | Tosc | 125 | 172 | 156 | 200 | ns | | | | High Time | Tch | - | 86 | 78 | - | ns | | | | Low Time | Tcl | - | 86 | 78 | - | ns | | | Data | Setup Time | Tsu | 12 | - | - | - | ns | | | Data | Hold Time | Thd | 12 | - | - | - | ns | | | | Period | TH | ı | 371 | 408 | 1 | Tosc | | | | Pulse Width | THS | - | 4 | 30 | | Tosc | | | Hsync | Back-Porch | Thb | - | 39 | 38 | - | Tosc | | | Tisyric | Display Period | TEP | - | 320 | 320 | - | Tosc | | | | Hsync-den time | THE | 3 | 43 | 68 | - | Tsoc | | | | Front-Porch | Thf | 2 | 8 | 20 | - | Tosc | | | | Period | Tv | - | 260 | 262 | - | TH | | | | Pulse Width | Tvs | 1 | 4 | 3 | ı | TH | | | Vsync | Back-Porch | Tvb | 1 | 8 | 15 | - | TH | | | . 5,5 | Display Period | Tvd | - | 240 | 240 | - | TH | | | | Vsync-den time | TVE | - | 12 | 18 | | TH | | | | Front-Porch | T∨f | 2 | 8 | 4 | - | TH | | Note: 1. Tv = Tvs + Tvb + Tvd + Tvf, the user is make up by yourself. 2. It is necessary to keep TVE =12 and THE =43 in sync mode. DE mode is unnecessary to keep it. 3. DEN Positive: Polarity #### **Digital Serial RGB interface:** | Signal | Item | Symbol | Min | SYNC
mode | DE/
SYNC+DE | Max | Unit | Remark | |--------|----------------|--------|-----|--------------|----------------|-----|------|--------| | | DCLK Frequency | Tclk | 15 | 15.77 | 19.24 | 21 | MHZ | | | Dolls | Frequency | Tosc | - | 64 | 52 | - | ns | | | Dclk | High Time | Tch | - | 32 | 26 | - | ns | | | | Low Time | Tcl | - | 32 | 26 | - | ns | | | Data | Setup Time | Tsu | 12 | - | - | - | ns | | | Dala | Hold Time | Thd | 12 | - | - | - | ns | | | | Period | TH | 1 | 1011 | 1224 | - | Tosc | | | | Pulse Width | THS | 5 | 4 | 90 | - | Tosc | | | Цолго | Back-Porch | Thb | | 39 | 114 | | Tosc | | | Hsync | Display Period | TEP | - | 960 | 960 | - | Tosc | | | | Hsync-den time | THE | 3 | 43 | 204 | - | | | | | Front-Porch | Thf | 2 | 8 | 60 | ı | Tosc | | | | Period | Tv | - | 260 | 262 | - | TH | | | | Pulse Width | Tvs | 1 | 4 | 3 | - | TH | | | Varina | Back-Porch | Tvb | - | 8 | 15 | - | TH | | | Vsync | Display Period | Tvd | 1 | 240 | 240 | - | TH | | | | Vsync-den time | TVE | 1 | 12 | 18 | - | TH | | | | Front-Porch | Tvf | 2 | 8 | 4 | - | TH | | Note: 1. Tv = Tvs + Tvb + Tvd + Tvf, the user is make up by yourself. 2. It is necessary to keep TVE =12 and THE =43 in sync mode. DE mode is unnecessary to keep it. 3. DEN Positive: Polarity #### 6.1 Waveform #### Data Transaction Timing in Serial RGB (8 bit) Interface (SYNC Mode) Data Transaction Timing in Serial RGB (8 bit) Interface (DE Mode) #### a) Horizontal Data Transaction Timing b) Vertical Data Transaction Timing #### Data Transaction Timing in Parallel RGB (24 bit) Interface (SYNC Mode) Data Transaction Timing in Parallel RGB (24 bit) Interface (DE Mode) Data Transaction Timing in RGB Interface SYNC +DE Mode #### 6.1.1 Clock and Sync waveforms IHS and IVS timing waveforms #### **6.2 Reset Timing Chart** The RESET input must be held at least 1ms after power is stable Reset timing #### 7. OPTICAL CHARACTERISTIC $Ta=25\pm2^{\circ}C$, ILED=20mA | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Remark | |--------------------|-------------------------------|-----------|---|------|------|------|-------------------|-------------------| | Response time | е | Ton+ Toff | $\theta = 0^{\circ} \cdot \Phi = 0^{\circ}$ | 1 | 25 | 35 | ms | Note 3, | | Contrast ratio | | CR | At optimized viewing angle | 600 | 800 | ı | - | Note 4, | | Color Chromoticity | Salan Olana maatiaitu W/laita | | θ=0°、Φ=0 | 0.26 | 0.31 | 0.36 | 1 | Note 2.5.6 | | Color Chromaticity | White | Wy | $\theta = 0 \Psi = 0$ | 0.28 | 0.33 | 0.38 | - | Note 2,5,6 | | | Hor | ΘR | OD > 40 | 70 | 80 | ı | | | | Viewing engle | Hor. | ΘL | | 70 | 80 | - | Dog | Note 4 | | Viewing angle | Ver. | ΦТ | CR≧10 | 70 | 80 | - | Deg. | Note 1 | | | ver. | ФВ | | 70 | 80 | - | | | | Brightness | | - | - | 350 | 450 | 1 | cd/m ² | Center of display | $Ta=25\pm2^{\circ}C$, $I_L=20mA$ Note 1: Definition of viewing angle range Fig. 8-1 Definition of viewing angle Note 2: Test equipment setup: After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 / CS2000 luminance meter 1.0° field of view at a distance of 500mm and normal direction. Fig. 8-2 Optical measurement system setup Note 3: Definition of Response Time (T_R, T_F) : Note 4: Definition of contrast ratio: The contrast ratio is defined as the following expression. Note 5: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD Note 6: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened. #### 8. INTERFACE #### 8.1. LCM PIN Definition | Pin | Symbol | I/O | Function | Remark | |-----|----------------|-----|----------------------------------|--------| | 1 | LED- | I | Backlight LED Ground | | | 2 | LED- | I | Backlight LED Ground | | | 3 | LED+ | I | Backlight LED Power | | | 4 | LED+ | I | Backlight LED Power | | | 5 | TOUCH_PANEL_Y1 | 0 | LCD Touch Panle Y1 | | | 6 | TOUCH_PANEL_X1 | 0 | LCD Touch Panle X1 | | | 7 | NC | - | Not Use | | | 8 | /RESET | - | Hardware Reset | | | 9 | SPENA | I | SPI Interface Data Enable Signal | | | 10 | SPCLK | I | SPI Interface Data Clock | Note 1 | | 11 | SPDAT | I | SPI Interface Data | | | 12 | В0 | I | Blue Data Bit 0 | | | 13 | B1 | I | Blue Data Bit 1 | | | 14 | B2 | I | Blue Data Bit 2 | | | 15 | B3 | I | Blue Data Bit 3 | | | 16 | B4 | I | Blue Data Bit 4 | | | 17 | B5 | I | Blue Data Bit 5 | | | 18 | В6 | I | Blue Data Bit 6 | | | 19 | В7 | I | Blue Data Bit 7 | | | 20 | G0 | I | Green Data Bit0 /DX0 | | | 21 | G1 | I | Green Data Bit1 /DX1 | | | 22 | G2 | I | Green Data Bit2 /DX2 | | | 23 | G3 | I | Green Data Bit3 /DX3 | Note 2 | | 24 | G4 | I | Green Data Bit4 /DX4 | Note 2 | | 25 | G5 | I | Green Data Bit5 /DX5 | | | 26 | G6 | I | Green Data Bit6 /DX6 | | | 27 | G7 | I | Green Data Bit7 /DX7 | | | 28 | R0 | I | Red Data Bit0 | | | 29 | R1 | I | Red Data Bit1 | | | 30 | R2 | I | Red Data Bit2 | | | 31 | R3 | I | Red Data Bit3 | | | 32 | R4 | I | Red Data Bit4 | | | 33 | R5 | - | Red Data Bit5 | | |----|----------------|-----|-------------------------------------|--------| | 34 | R6 | I | Red Data Bit6 | | | 35 | R7 | I | Red Data Bit7 | | | 36 | HSYNC | I | Horizontal Sync Input | Note 3 | | 37 | VSYNC | 1 | Vertical Sync Input | Note 3 | | 38 | DCLK | 1 | Dot Data Clock | | | 39 | NC | - | Not Use | | | 40 | NC | - | Not Use | | | 41 | Vcc | I | Digital Power | | | 42 | Vcc | I | Digital Power | | | 43 | TOUCH_PANEL_Y2 | 0 | LCD Touch Panel Y2 | | | 44 | TOUCH_PANEL_X2 | 0 | LCD Touch Panel X2 | | | 45 | NC | - | Internal test use | | | 46 | NC | - | Not Use | | | 47 | NC | ı | Internal test use | | | 48 | NC | I | Not Use | | | 49 | NC | I | Not Use | | | | | | Control the input data format | | | 50 | SEL0 | - 1 | L:Parallel RGB (24-bit) ; H: serial | | | | | | RGB(8-bit) | | | 51 | NC | - | Not Use | | | 52 | DE | I | Data Enable Input | Note 3 | | 53 | DGND | - | Ground | | | 54 | AVSS | _ | | | #### Note: - 1. Usually pull high. - 2. IF select serial RGB(8-bit) input mode is selected, only DX0-DX7 used, and the other short to GND, only selected serial RGB interface, DX BUS will enable. Digital input mode DX0 is LSB and DX7 is MSB. - 3. For digital RGB input data format, SYNC mode ,DE mode and DE+SYNC mode are supported. Suggest used DE or DE+SYNC mode. (It is necessary to keep TVE =12 and THE =43 in SYNC mode). #### 8.2 SPI timing Characteristics | Item | Symbol | Min. | Тур. | Max. | Unit | Conditions | |------------------------------|--------|------|------|------|------|------------| | CS Input Setup Time | Ts0 | 50 | - | - | ns | | | Serial Data Input Setup Time | Ts1 | 50 | | - | ns | | | CS Input Hold Time | Th0 | 50 | - | | ns | | | Serial Data Input Hold Time | Th1 | 50 | - | - | ns | | | SCL Write Pulse High Width | Twh1 | 50 | - | - | ns | | | SCL Write Pulse Low Width | Twl1 | 50 | | - | ns | | | SCL Read Pulse High Width | Trh1 | 300 | | | ns | | | SCL Read Pulse Low Width | Trl1 | 300 | 88 | | ns | | | CS Pulse High Width | Tw2 | 400 | - | N#1 | ns | | Figure 8 SPI read · write timing a. Each serial command consists of 16 bits of data which is loaded one bit a time at the rising edge of serial clock SCL. R/W: Read/Write mode control bit. b. Command loading operation starts from the falling edge of CS and is completed at the next rising edge of #### CS. - c. The serial control block is operational after power on reset, but commands are established by the VSYNC signal. If command is transferred multiple times for the same register, the last command before the VSYNC signal is valid. - d. If less than 16 bits of SCL are input while CS is low, the transferred data is ignored. - e. If 16 bits or more of SCL are input while CS is low, the previous 16 bits of transferred data before then rising edge of CS pulse are valid data. - f. Serial block operates with the SCL clock - g. Serial data can be accepted in the power save mode. - h. After power on reset or GRB reset, it is required 100ms delay to begin SPI communication. ### 8.3 Basic Display Color and Gray Scale | | | Input Color Data |-----------------|--|-----------------------|-----------------------|----------------------------|-----------|-----------------------|-----------------------|----------------------------|---------------------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|----------------------------|-----------------------|----------------------------|----------------------------|----------------------------| | Color | | Red | | | | | | | Green | | | | | | | | Blue | | | | | | | | | | | | MS | В | | LSB | | | | MSB | | | | LSB | | Μ | MSB | | | LSB | | | SB | | | | | | | | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | В7 | В6 | В5 | В4 | ВЗ | В2 | В1 | ВО | | Basic
Colors | Black
Red(255)
Green(255)
Blue(255)
Cyan | 0 1 0 0 0 | 0
1
0
0 | 0
1
0
0 | 0 1 0 0 0 | 0
1
0
0 | 0
1
0
0 | 0
1
0
0 | 0
1
0
0 | 0
0
1
0 0
0
0
1 | | Magenta
Yellow
White | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 0 1 1 | 0 1 1 | 0 | 0 1 1 | 0 1 1 | 0 1 1 | 0 1 1 | 0 1 1 | 1
0
1 | 1
0
1 | 1 0 1 | 1
0
1 | 1 0 1 | 1 0 1 | 1 0 1 | 1
O
1 | | Red | Red(0) Dark Red(1) Red(2) : Red(253) Red(254) Red(255) Bright | O
O
:
1
1 | 0
0
:
1
1 | 0
0
:
1
1 | 0 0 : 1 1 | 0
0
:
1
1 | 0
0
:
1
1 | 0
0
1
:
0
1 | O
1
O
:
1
O
1 | 000.000 | 000.000 | 000.000 | 000.000 | 000.000 | 000.000 | 000.000 | 0 0 0 : 0 0 | 0 0 0 : 0 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 0 | 000.000 | 000.000 | 0 0 0 : 0 0 0 | 0 0 0 0 0 0 | 0 0 : 0 0 | | Green | Green(0) Dark Green(1) Green(2) : Green(253) Green(254) Green(255)Bright | 0 0 0 0 0 0 | 000:000 | 0 0 0 : 0 0 | 000.000 | 000:000 | 000:000 | 000:000 | 000:000 | 0
0
:
1
1 | 0
0
:
1
1 | 0 0 0 : 1 1 | 0
0
:
1
1 | 0
0
:
1
1 | 0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 0 | 0 0 0 0 0 0 | 0 0 0 : 0 0 | 000000 | 0 0 0 : 0 0 | | Bl∪e | Blue(0) Dark Blue(1) Blue(2) : Blue(253) Blue(254) Blue(255) Bright | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0
0
0
:
0
0 | 0 0 0 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0
0
0
:
0
0 | 0 0 0 : 0 0 | 0
0
0
:
0
0 | 0
0
0
:
1
1 | 0
0
0
:
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0 | #### 9. BLOCK DIAGRAM #### **10. QUALITY ASSURANCE** | No. | Test Item | Test Condition | Remark | |-----|-------------------------------------|---------------------|--------| | 1 | High Temp Storage | 85°C, 240 hrs | | | 2 | Low Temp Storasge | -30°C,240 hrs | | | 3 | High Temp Operation | 80°C, 240 hrs | | | 4 | Low Temp Operation | -30°C, 240 hrs | | | 5 | High Temp & High Humidity Operation | 60°C,90%RH, 240 hrs | | #### Note: - (1) The test samples have recovery time need more than 2 hours at room temperature before the function check. In the standard conditions, there is no abnormal display function occurred. - (2) After the reliability test, the product only guarantees operation function, but don't guarantee all of the cosmetic specification. - (3) Under no condensation of dew. . #### 11. OUTLINE DRAWING #### 12. PACKAGE INFORMATION - 3.5" module (ZJ035BF-01C) delivery packing method - (1). Module packed into tray cavity (with Module display face up). - (2). Next, place 2pcs EPE spacer above the display surface of the module... - (3). Tray stacking with 19 layers and with 1 empty tray above the stacking tray unit. - (4). 2pcs desiccant put on top of empty trays. - (5). Stacking tray unit put into the aluminium foil bag, and Sealed by Vacuum & Thermal treatment. - (6). Put 1pc EPE cushion inside the carton bottom, and then pack the package unit into the carton. Put 1pc EPE cushion above the package unit. - (7). Carton tapping with adhesive tape with INNOLUX logo. # INNOLUX 群創光電 ### PRODUCT SPECIFICATION #### 13. RECAUTIONS Please pay attention to the following when you use this TFT LCD module. #### **13.1 MOUNTING PRECAUTIONS** - (1) You must mount a module using arranged in four corners or four sides. - (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. - And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - (3) Please attach a transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - (4) You should adopt radiation structure to satisfy the temperature specification. - (5) Acetic acid type and chlorine type materials for the cover case are not describe because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are determined to the polarizer) - (7) When the surface becomes dusty, please wipe gently with adsorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. - (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - (9) Do not open the case because inside circuits do not have sufficient strength. #### 13.2 OPERATING PRECAUTIONS - (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage) - (2) Response time depends on the temperature. (In lower temperature, it becomes longer.) - (3) Brightness depends on the temperature. (In lower temperature, it becomes lower) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer. - (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - (5) When fixed patterns are displayed for a long time, remnant image is likely to occur. - (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference. #### 13.3 ELECTROSTATIC DISCHARGE CONTROL Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly. #### 13.4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE Strong light exposure causes degradation of polarizer and color filter. #### 13.5 STORAGE When storing modules as spares for a long time, the following precautions are necessary. - (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. #### 13.6 HANDLING PRECAUTIONS FOR PROTECTION FILM - (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc. - (2) The protection film is attached to the polarizer with a small amount of glue. Is apt to remain on the polarizer. Please carefully peel off the protection film without rubbing it against the polarizer. - (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off. You can remove the glue easily. - (4) When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.