SPECIFICATION FOR APPROVAL | (|) | Preliminary Specification | |----|-----|----------------------------------| | 14 | • 1 | Final Specification | | little | ۷. | 3.8° Full HD 1F1 | LCD | |--------|----|------------------|----------------------| | | | | | | BUYER | | SUPPLIER | LG Display Co., Ltd. | | MODEL | | *MODEL | LM238WF8 | | BUYER | | |-------|--| | MODEL | | | *When you obtain standard approval, | |--| | please use the above model name without suffix | SSC1 **SUFFIX** | SIGNATURE | DATE | |-----------|------------| | / | | | | | | | . <u> </u> | | , | | | / | | Please return 1 copy for your confirmation With your signature and comments. | APPROVED BY | SIGNATURE
DATE | |---------------------------------|-----------------------| | SangHoon Lee / G.Manager | Signed, 5/15 | | REVIEWED BY | | | YongSung Kim / Manager [C] | Signed, 5/15 | | YunHo Hwang / Manager [M] | Signed, 5/15 | | GyuSam Kim / Manager [O] | Signed, 5/15 | | Jin Heo / Manager [P] | S <u>igned</u> , 5/15 | | PREPARED BY TaeIl Oh / Engineer | Signed, 5/15 | Product engineering dept. LG Display Co., Ltd Ver. 1.1 May. 15. 2024 1/34 ## **Contents** | No. | Item | Page | |-----|--|------| | | Cover | 1 | | | Contents | 2 | | | Record of Revisions | 3 | | 1 | General Description | 4 | | 2 | Absolute Maximum Ratings | 5 | | 3 | Electrical Specifications | 6 | | 3-1 | Electrical Characteristics | 6 | | 3-2 | Interface Connections | 9 | | 3-3 | Signal Timing Specifications | 14 | | 3-4 | Signal Timing Waveforms | 15 | | 3-5 | Color Data Reference | 16 | | 3-6 | Power Sequence | 17 | | 3-7 | Power Dip Condition | 18 | | 4 | Optical Specifications | 19 | | 5 | Mechanical Characteristics | 23 | | 6 | Reliability | 26 | | 7 | International Standards | 27 | | 7-1 | Safety | 27 | | 7-2 | Environment | 27 | | 8 | Packing | 28 | | 8-1 | Designation of Lot Mark | 28 | | 8-2 | Packing Form | 29 | | 9 | Precautions | 30 | | 9-1 | Mounting Precautions | 30 | | 9-2 | Operating Precautions | 30 | | 9-3 | Electrostatic Discharge Control | 31 | | 9-4 | Precautions For Strong Light Exposure | 31 | | 9-5 | Storage | 31 | | 9-6 | Handling Precautions For Protection Film | 31 | | Revision
No | Revision
Date | Page | Before | After | Application
Date | |----------------|----------------------|------|---|--|---------------------| | 0.0 | May. 25
2023 | - | First Draft(Preliminary) | | | | | | 8 | Table 3-2. LED Bar Electrical Characteristics Parameter Symbol Values Min Typ Max Unit Notes LED String Qurrent Is - TBO TBO mA 1,2 LED String Voltage Vs TBO TBO TBO V 1,3 Power Consumption PBar - TBO TBO Widt 2,5 LED Life Time LED_LT 30,000 - - His 4 | Table 3-2. LED Bar Electrical Characteristics Values | | | 0.1 | 24
Jul.14
2023 | 24 | | | | | | | 25 | | | | | | | 24 | | | | | 0.2 | Aug.22
2023 | 25 | | aca | | | Revision
No | Revision
Date | Page | Before | After | Application
Date | |----------------|------------------|------------------|---|--|---------------------| | | | | Update the Outline, Thickness, Weight, | Mechanical Drawing | | | 0.5 | Dec. 11
2023 | 6, 25,
26, 27 | | | | | 0.6 | Dec. 12.
2023 | 13 | Update the notes about AC specification None | Note: SSC (Nav. ±3.0%), Modulation frequency (Nav. 2000/td.). This SSC specifications are just 1-CUII operation specification. In case of various system condition, the optimum setting value of SSC can be different LGD recommend the SI should be adjust the SSC device and an adjustment of the specification and modulation frequency in order not to happen any limits of defect phenomenon. | | | 0.7 | Dec. 13.
2023 | 16 | Dem Symbol Symbol Min Typ Max Unit Notes | Rem Symbol Symbol Min Typ Max Unit Nictes | | | 0.8 | Apr.04.
2024 | 8 | Update Electrical Characteristics notes 4) VLCD level must be measured between two points on PCB of LCM VLCD(test point) ~ LCM Ground. (Test condition: Maximum power pattern, 25°C, fV = 60Hz) | 4) VLCD level must be measured between two points on PCB of LCM VLCD(test point) ~ LCM Ground. (Test condition: Maximum power pattern, 25°C, fV = 60Hz/100Hz) | | | Revision
No | Revision
Date | Page | Before | | | | | After | | | | | Application
Date | | |----------------|------------------|--------|---|--|--------------|---|--------------|--|---|--|--------------|---|-------------------------------|--| | | | | Update th | e Mechanical [| Oraw | ing | | | | | | | | | | | | 27, 28 | | | | | | T.E. | | | | | 227 | | | | | | RGB Color | Coordinates | | | | | | | | | | | | | | 25 | Color Coordinates
[CIE 1931]
(By PR650) | Red Rx Ry Gx Gareen Gy Blue Bx By Wx White Wy | Тур
-0.03 | 0.661
0.327
0.316
0.629
0.144
0.058
0.313 | Typ
+0.03 | Color Coordinates
[CIE 1931]
(By PR650) | Red Green Blue White | Rx
Ry
Gx
Gy
Bx
By
Wx
Wy | Typ
-0.03 | 0.674
0.314
0.285
0.650
0.144
0.057
0.313 | Тур
+0.03 | | | | | | Update th | e torque of us | er ho | ole sp | ec | | | | | | | | | 0.9 | May.14.
2024 | 27 | 2. LED connector specification: 3. Torque of user hole: 3.0-4.0k 4-1. Till Value definition | 1100-L30O C23Manufactured by UJJ) 1100-L30O C23Manufactured by Visorito or 4 1100-2008-14100(HP) manufactured by Visorito or 4 1100-2008-14100(HP) manufactured by Visorito or 4 1100-2008-14100(HP) 1100-2008 | | | | 2. LED connector specification. 3. Torque of user hole: 3.0-0.0 4-1. Till Value definition 8 | 8100.1300 C23Neurizatura lo 1003996-14000991 manufactura lo 1003996-14000991 manufactura gel cm. Tolerance Range 103 | red by Yeonho or | | | | | | | | | White Co | lor Coordinates | s (Mi | n, Ma | ax) | | | | | | | | | 1.0 | May.15.
2024 | 22 | Color Coordinates
[CIE 1931]
(By PR650) | Red Rx Ry Gx Green Gy Blue By White Wx | Typ
-0.03 | 0.674
0.314
0.285
0.650
0.144
0.057
0.313 | Typ
+0.03 | Color Coordinates
[CIE 1931]
(By PR650) | Red - Green - Blue - | Rx
Ry
Gx
Gy
Bx
By
Wx | Typ
-0.03 | 0.674
0.314
0.285
0.650
0.144
0.057
0.313 | Түр
+0.03
Түр
+0.025 | | | | | - | Final CAS | <u> </u> | | | | | | | | | | | | Revision
No | Revision
Date | Page | Before | After | Application
Date | |----------------|------------------|------|--|-------|---------------------| | | | | Update the Mechanical Drawing | | | | 1.1 | May.21.
2024 | 29 | Manager Manage | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | #### 1. General Description LM238WF8 is a color active matrix liquid crystal display with a Light Emitting Diode(LED) backlight assembly without LED driver. The matrix employs a-Si thin film transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 23.8 inch diagonally measured active display area with FHD resolution(1920 horizontal by 1080 vertical pixel array). Each pixel is divided into red, green and blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16.78 Million colors with A-FRC (Advanced Frame Rate Control). It has been designed to apply 8-bit 2port LVDS interface. It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important. **FIG.1 Block Diagram** #### **General Features** | Active Screen Size | 23.8 inches(60.47 cm)(Aspect ratio 16:9) | |------------------------|-----------------------------------------------------------------------------------------------------| | Outline Dimension | 535.0(H) x 309.36(V) x 11.31(D) mm(Typ.) | | Pixel Pitch | 0.2745(H) x 0.2745(V) mm | | Pixel Format | 1920(H) x 1080(V) Pixels. RGB stripes arrangement. | | Color Depth | 16.78 Million colors, 8 Bit(6 Bit + A-FRC) | | Luminance, White | 350 cd/m ² (Center 1Point, Typ.) | | Viewing Angle(CR>10) | R/L 178° (Typ.), U/D 178° (Typ.) | | Power Consumption | Total 12.15 Watt (Typ.)(1.65 Watt@ Mosaic_ V_{LCD} , 10.5 Watt@ Is = 62mA) | | Weight | 1,870g (Typ.) | | Display Operating Mode | Transmissive mode, Normally black | | Panel type | Reverse type | | Surface Treatment | Anti-Glare treatment of the front polarizer(Haze25%, 3H) | | Low Blue Light Panel | The ratio of light in the range from 415nm - 455nm compared to 400nm - 500nm shall be less than 50% | #### 2. Absolute Maximum Ratings The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit. **Table 2-1. Absolute Maximum Ratings** | Darameter | Cumbal | Val | ues | Units | Notos | |------------------------------------|----------------------|------|------|----------|---------| | Parameter | Symbol | Min | Max | UTILS | Notes | | Power Supply Input Voltage | V_{LCD} | -0.3 | +6.0 | V_{DC} | At 25°C | | Operating Temperature | T _{OP} | 0 | 50 | °C | | | Storage Temperature | T _{ST} | -20 | 60 | °C | 1 2 2 | | Operating Ambient Humidity | H _{OP} | 10 | 90 | %RH | 1,2,3 | | Storage Humidity | H _{ST} | 10 | 90 | %RH | | | LCM Surface Temperature(Operation) | T _{surface} | 0 | 65 | °C | 1,4 | #### Notes: - 1) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39°C Max, and no condensation of water. - 2) Maximum storage humidity is up to 40°C, 70% RH only for 4 corner light leakage mura. - 3) Storage condition is guaranteed under packing condition. - 4) LCM surface temperature should be measured under the condition of V_{LCD} = Typ, f_V = 60Hz, T_a = 25°C, no humidity and typical LED string current. - * f_V = Frame frequency * T_a = Ambient temperature **FIG.2 Temperature And Relative Humidity** ### 3. Electrical Specifications #### 3-1. Electrical Characteristics It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs. **Table 3-1. Electrical Characteristics** | Dt | Complete I | | Values | | 11 | Notes - | |-------------------------------|------------------|-----|--------|-------|-------|-------------------------| | Parameter | Symbol | Min | Тур | Max | Unit | Notes | | Module: | | | | | | | | Power Supply Input voltage | V _{LCD} | 4.5 | 5.0 | 5.5 | Vdc | 4 | | Permissive Power Input Ripple | VRIPPLE | - | | 400 | mVp-p | 1 | | | ILCD Typ. | - | 330 | 410 | mA | | | Power Supply Input Current | ILCD Max. | - | 500 | 688 | mA | | | | ILCD White. | - | 360 | 450 | mA | 2 | | | PLCD Typ. | - | 1.65 | 2.05 | W | (f _V =60Hz) | | Power Consumption | PLCD Max. | - | 2.5 | 3.44 | W | | | | PLCD White. | - | 1.80 | 2.25 | W | | | | ILCD Typ. | - | 470 | 580 | mA | | | Power Supply Input Current | ILCD Max. | - | 850 | 1,064 | mA | | | | ILCD White. | - | 476 | 590 | mA | 2 | | | PLCD Typ. | - | 2.35 | 2.90 | W | (f _V =100Hz) | | Power Consumption | PLCD Max. | - | 4.25 | 5.32 | W | | | | PLCD White. | - | 2.38 | 2.95 | W | | | Rush Current | Irush | - | - | 4.0 | Α | 3 | #### Notes: - 1) Permissive power ripple should be measured under the condition of V_{LCD} = Typ, 25±2°C, f_V = Max. Refer to page 7 for the pattern and more information. - 2) The specified current and power consumption can be measured under the V_{LCD} = Typ, 25±2°C, and the pattern should be changed according to the typical or maximum power condition. The max. current can be measured only with the maximum power pattern. See the page 7 for details. - 3) Maximum condition of inrush current: - The duration of rush current is about 5ms and rising time of power input is 500us \pm 20%.(Min). - 4) V_{LCD} level must be measured between two points on PCB of LCM V_{LCD} (test point) ~ LCM Ground. (Test condition: Maximum power pattern, 25°C, $f_V = 60Hz/100Hz$) - f_v = Frame frequency • **Permissive Power Input Ripple**($V_{LCD} = Typ$, 25°C, $f_V(frame frequency) = Max condition)$ **Full Green Pattern** For the exact ripple measurement, the condition of Max 20MHz is recommended in the bandwidth configuration of oscilloscope. • **Power Consumption**($V_{LCD} = Typ$, 25°C, $f_V(frame frequency) = 60Hz condition)$ **Typical Power Pattern** **Maximum Power Pattern** FIG.3-1 Mosaic Pattern & Full Green Pattern For Power Consumption Measurement Ver. 1.1 May. 15. 2024 11 / 34 #### **Table 3-2. LED Bar Electrical Characteristics** | Darameter | Cymbol | | Values | Unit | Notes | | | |--------------------|--------|--------|--------|------|-------|-------|--| | Parameter | Symbol | Min | Тур | Max | Ullic | Notes | | | LED String Current | Is | - | 62 | 67 | mA | 1,2 | | | LED String Voltage | Vs | 39.2 | 42.2 | 45.2 | V | 1,3 | | | Power Consumption | PBar | - | 10.5 | 11.2 | Watt | 2,5 | | | LED Life Time | LED_LT | 30,000 | - | - | Hrs | 4 | | Note: The LED consists of 60 LED packages, 4 strings(parallel) x 15 packages(serial) x 1 bar #### Notes: - 1) The specified values are for single LED bar. - 2) The specified current is defined as the input current for single LED string with 100% duty cycle. - 3) The specified voltage is the input LED string voltage at typical current 100% duty cycle. - 4) The LED life time is defined as the when brightness of LED itself reach to the 50% of initial value under the conditions at T_a = 25±2°C and typical LED string current. 5) The power consumption shown above does not include the loss of external LED driver. - 5) The power consumption shown above does not include the loss of external LED driver. The typical power consumption is calculated as Pbar = Vs(Typ.) x Is(Typ.) x No. of strings. The maximum power consumption is calculated as PBar = Vs(Max.) x Is(Typ.) x No. of strings. #### 3-2. Interface Connections #### 3-2-1. LCD Module - LCD Connector(Receptacle): IS100-L300-C23(Manufactured by UJU) - Mating Connector(Plug): FI-X30C2L(Manufactured by JAE) or equivalent #### <u>Table 3-3. Module Connector(CN1) Pin Configuration</u> | No | Symbol | Description | No | Symbol | Symbol | |----|--------|-----------------------------------------|----|------------------|---------------------------------------------------| | 1 | RXO0- | Minus signal of odd channel 0(LVDS) | 16 | RXE1+ | Plus signal of even channel 1(LVDS) | | 2 | RXO0+ | Plus signal of odd channel 0(LVDS) | 17 | GND | Ground | | 3 | RXO1- | Minus signal of odd channel 1(LVDS) | 18 | RXE2- | Minus signal of even channel 2(LVDS) | | 4 | RXO1+ | Plus signal of odd channel 1(LVDS) | 19 | RXE2+ | Plus signal of even channel 2(LVDS) | | 5 | RXO2- | Minus signal of odd channel 2(LVDS) | 20 | RXEC- | Minus signal of even clock channel(LVDS) | | 6 | RXO2+ | Plus signal of odd channel 2(LVDS) | 21 | RXEC+ | Plus signal of even clock channel(LVDS) | | 7 | GND | Ground | 22 | RXE3- | Minus signal of even channel 3(LVDS) | | 8 | RXOC- | Minus signal of odd clock channel(LVDS) | 23 | RXE3+ | Plus signal of even channel 3(LVDS) | | 9 | RXOC+ | Plus signal of odd clock channel(LVDS) | 24 | GND | Ground | | 10 | RXO3- | Minus signal of odd channel 3(LVDS) | 25 | NC | No Connection(I2C serial interface for LCM:SCL) | | 11 | RXO3+ | Plus signal of odd channel 3(LVDS) | 26 | NC | No Connection(I2C serial interface for LCM:SDA) | | 12 | RXE0- | Minus signal of even channel 0(LVDS) | 27 | ITLC | Interlace image sticking reduction mode selection | | 13 | RXE0+ | Plus signal of even channel 0(LVDS) | 28 | V _{LCD} | Power Supply +5.0V | | 14 | GND | Ground | 29 | V_{LCD} | Power Supply +5.0V | | 15 | RXE1- | Minus signal of even channel 1(LVDS) | 30 | V_{LCD} | Power Supply +5.0V | #### Notes: - 1) All GND(ground) pins should be connected together to the LCD module's metal frame. - 2) All V_{LCD}(power input) pins should be connected together. - 3) All input level of LVDS signals are based on the EIA 644 standard. - 4) ITLC is used for image sticking reduction in interlace mode. (L: Normal mode, H: Interlace image sticking reduction mode) This pin should be connected to GND in normal mode. (Low level Input Voltage : GND \sim 0.4V, High level Input Voltage : 1.6 \sim 3.6V) IS100-L300-C23 Rear view of LCM Ver. 1.1 May. 15. 2024 13 / 34 ### Required signal assignment for flat link(TI:SN75LVDS83) transmitter | No | Pin Name | Required Signal | No | Pin Name | Required Signal | |----|----------|----------------------------|----|-------------|------------------------------------------| | 1 | VCC | Power supply for TTL Input | 29 | GND | Ground pin for TTL | | 2 | D5 | TTL Input(R7) | 30 | D26 | TTL Input(DE) | | 3 | D6 | TTL Input(R5) | 31 | Tx CLKIN | TTL Level clock Input | | 4 | D7 | TTL Input(G0) | 32 | PWR DWN | Power down Input | | 5 | GND | Ground pin for TTL | 33 | PLL GND | Ground pin for PLL | | 6 | D8 | TTL Input(G1) | 34 | PLL VCC | Power supply for PLL | | 7 | D9 | TTL Input(G2) | 35 | PLL GND | Ground pin for PLL | | 8 | D10 | TTL Input(G6) | 36 | LVDS GND | Ground pin for LVDS | | 9 | VCC | Power supply for TTL Input | 37 | Tx OUT3+ | Positive LVDS differential data output 3 | | 10 | D11 | TTL Input(G7) | 38 | Tx OUT3 - | Negative LVDS differential data output 3 | | 11 | D12 | TTL Input(G3) | 39 | Tx CLKOUT + | Positive LVDS differential clock output | | 12 | D13 | TTL Input(G4) | 40 | Tx CLKOUT - | Negative LVDS differential clock output | | 13 | GND | Ground pin for TTL | 41 | Tx OUT2+ | Positive LVDS differential data output 2 | | 14 | D14 | TTL Input(G5) | 42 | Tx OUT2 - | Negative LVDS differential data output 2 | | 15 | D15 | TTL Input(B0) | 43 | LVDS GND | Ground pin for LVDS | | 16 | D16 | TTL Input(B6) | 44 | LVDS VCC | Power supply for LVDS | | 17 | VCC | Power supply for TTL Input | 45 | Tx OUT1+ | Positive LVDS differential data output 1 | | 18 | D17 | TTL Input(B7) | 46 | Tx OUT1 - | Negative LVDS differential data output 1 | | 19 | D18 | TTL Input(B1) | 47 | Tx OUT0 + | Positive LVDS differential data output 0 | | 20 | D19 | TTL Input(B2) | 48 | Tx OUT0 - | Negative LVDS differential data output 0 | | 21 | GND | Ground pin for TTL Input | 49 | LVDS GND | Ground pin for LVDS | | 22 | D20 | TTL Input(B3) | 50 | D27 | TTL Input(R6) | | 23 | D21 | TTL Input(B4) | 51 | D0 | TTL Input(R0) | | 24 | D22 | TTL Input(B5) | 52 | D1 | TTL Input(R1) | | 25 | D23 | TTL Input(RSVD) | 53 | GND | Ground pin for TTL | | 26 | VCC | Power supply for TTL Input | 54 | D2 | TTL Input(R2) | | 27 | D24 | TTL Input(HSYNC) | 55 | D3 | TTL Input(R3) | | 28 | D25 | TTL Input(VSYNC) | 56 | D4 | TTL Input(R4) | 1) Refer to LVDS transmitter data sheet for detail description. 2) 7 means MSB and 0 means LSB at R,G,B pixel data. ### 3-2-2. LVDS Signal Specifications #### 1. DC Specification | Parameter | Symbol | Min | Max | Unit | Notes | |-------------------------------|------------|-----|-----|------|-------| | LVDS Differential voltage | $ V_{ID} $ | 150 | 600 | mV | | | LVDS Common mode voltage | V_{CM} | 1.0 | 1.5 | ٧ | | | LVDS Input voltage range | V_{IN} | 0.7 | 1.8 | ٧ | | | Change in common mode voltage | ΔVCM | - | 250 | mV | | Notes: Does not have any Noise & Peaking in LVDS Signal. #### 2. AC Specification | Parameter | Symbol | Min | Max | Unit | Notes | |----------------------------------------------|----------------------|-------|-------|-----------|----------------------| | | t _{SKEW} | - 300 | + 300 | ps | 95MHz > Fclk ≥ 85MHz | | LVDS Clock to data skew margin | t _{SKEW} | - 400 | + 400 | ps | 85MHz > Fclk ≥ 65MHz | | | t _{SKEW} | - 600 | + 600 | ps | 65MHz > Fclk ≥ 30MHz | | LVDS Clock to clock skew margin(Even to odd) | t _{SKEW_EO} | - 1/7 | + 1/7 | T_{clk} | - | #### Note: SSC (Max. $\pm 3.0\%$), Modulation frequency (Max. 200KHz). This SSC specifications are just T-CON operation specification. In case of various system condition, the optimum setting value of SSC can be different. LGD recommend the SI should be adjust the SSC deviation and modulation frequency in order not to happen any kinds of defect phenomenon. # 3. Data Format 1) LVDS 2 Port ### 3-2-3. Backlight Connector Pin Configuration The LED interface connector is 10035WS-H06D(HF)_wire-locking type manufactured by Yeonho or equivalent. The mating connector is a SHJP-06V-S(HF) or 10035HS-H06C(HF) or equivalent. The pin configuration for the connector is shown in the table below. **Table 3-4. LED Connector Pin Configuration** | Pin | Symbol | Description | Notes | |-----|--------|---------------------------------|-------| | 1 | FB1 | Channel1 current feedback | | | 2 | FB2 | Channel2 current feedback | | | 3 | VLED | LED power supply (Common anode) | | | 4 | VLED | LED power supply (Common anode) | | | 5 | FB3 | Channel3 current feedback | | | 6 | FB4 | Channel4 current feedback | | FIG.3-2 Backlight Connector View ### 3-3. Signal Timing Specifications This is the signal timing requirement from the signal transmitter. All of the interface signal timing should be satisfied with the following specifications for its proper operation. **Table 3-5. Timing Table** | Item | Symbol | Symbol | Min | Тур | Max | Unit | Notes | |-------|------------------------|--------|-------|-------|-------|------|------------------| | DCLI | Period | tCLK | 8.51 | 14.74 | 18.82 | ns | Pixel frequency | | DCLK | DCLK Frequency | | 53.15 | 67.85 | 117.5 | MHz | (Typ. 135.7 MHz) | | | Period | tHP | 1008 | 1028 | 1160 | tCLK | | | | Horizontal Valid | tHV | 960 | 960 | 960 | tCLK | | | | Horizontal Blank | tHB | 48 | 68 | 200 | tCLK | | | Hsync | Frequency | fH | 51.7 | 66 | 110 | kHz | 1,3,4 | | | Width | tWH | 16 | 24 | 24 | tCLK | | | | Horizontal Back Porch | tHBP | 4 | 12 | 140 | tCLK | | | | Horizontal Front Porch | tHFP | 28 | 32 | 36 | tCLK | | | | Period | tVP | 1100 | 1100 | 2362 | tHP | | | | Vertical Valid | tVV | 1080 | 1080 | 1080 | tHP | | | | Vertical Blank | tVB | 20 | 20 | 1282 | tHP | | | Vsync | Frequency | fV | 47 | 47 | 101 | Hz | 2,4 | | | Width | tWV | 5 | 5 | 5 | tHP | | | | Vertical Back Porch | | 12 | 12 | 1274 | tHP | | | | Vertical Front Porch | tVFP | 3 | 3 | 3 | tHP | | #### Notes: - 1) The value of Hsync Period, Hsync Width and Hsync valid should be even number times of tCLK. If the value is odd number times of tCLK, it can make asynchronous signal timing and cause abnormal display. - 2) The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates. - 3) The value of Hsync Period, Hsync Width, and Horizontal Back Porch should be divided by 4 without a remainder. - 4) The polarity of Hsync, Vsync is not restricted. ## 3-4. Signal Timing Waveforms #### 3-5. Color Data Reference The brightness of each primary color(Red,Green,Blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input. **Table 3-6. Color Data Reference** | | | | | | | | | | | | I | npu | t Co | olor | Dat | а | | | | | | | | | | |-------|-------------|----|---|---|----|----|---|---|---|----|---|-----|------|------|-----|---|---|----|---|----|----|----|---|----|-----| | | Color | | | | RE | ΕD | | | | | | | GRE | ΞEN | | | | | | | BL | UE | | | | | | | MS | | | | | | | | MS | | | | | | | | MS | | | | | | | .SB | | | | | | | | | | | | | | | | | G2 | | | | | B5 | B4 | | | B1 | | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue (255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | RED (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | RED | | | | | | | | | | | | | | | | | | | | | | | | | | | | RED (254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED (255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | GREEN | | | | | | | | | | | | | | | | | | | | | | | | | | | | GREEN (254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN (255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | BLUE | | | | | | | | | | | | | | | | | | | | | | | | | | | | BLUE (254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | BLUE (255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | #### 3-6. Power Sequence **Table 3-7. Power Sequence** | Davamatav | | Values | | Haita | |----------------|------|--------|------|-------| | Parameter | Min. | Typ. | Max. | Units | | T ₁ | 0.5 | - | 10 | ms | | T ₂ | 0.01 | - | 50 | ms | | T ₃ | 500 | - | - | ms | | T ₄ | 200 | - | - | ms | | T ₅ | 0.01 | - | 50 | ms | | T ₆ | 1000 | - | - | ms | | T ₇ | 0.5 | - | T2 | ms | | T ₈ | 0 | - | - | ms | #### Notes: - 1) Power sequence should be kept all the time including below cases for normal operation. - AC/DC Power On/Off - Mode change (resolution, frequency, timing, sleep mode, color depth change, etc.) The violation of power sequence can cause a significant trouble in display and reliability. - Please avoid floating state of interface signal during signal invalid period. When the interface signal is invalid, be sure to pull down the V_{LCD}.(0V) Please turn off the power supply for LED when the level of V_{LCD} changes to prevent noise issue. When measuring valid data starting point, it can be measured that LVDS signal starts swing. ## 3-7. Power Dip Condition FIG.3-3 Power Dip Condition For proper operation, stable power supply of V_{LCD} is necessary and power dip is allowed only in below condition. Except this condition, power on/off should follow power sequence specification exactly. 1) Dip Condition $$3.5V \leq V_{LCD} < 4.5V \; , \; \; t_d \leq 20ms \label{eq:lcd}$$ ### 4. Optical Specifications Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at 25±2°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0° and aperture 1 degree. FIG.4-1 presents additional information concerning the measurement equipment and method. FIG.4-1 Optical Characteristic Measurement Equipment And Method **Table 4-1. Optical Characteristics** $(T_a=25 \text{ °C}, V_{LCD}=Typ, f_V=60 \text{ Hz}, DCLK=Typ, I_S=Typ)$ | Рамам | a a b a w | Cymahal | | Values | | Linita | Notos | |------------------------------|----------------------------------------|----------------------|--------|--------|--------|-------------------|-------| | Param | ietei | Symbol | Min. | Тур. | Max. | Units | Notes | | Contrast Ratio | Contrast Ratio | | 1050 | 1500 | - | | 1 | | Surface Luminance, | white | L _{WH} | 280 | 350 | - | cd/m ² | 2 | | Luminance Variation | 1 | δ _{WHITE} | 75 | - | - | % | 3 | | Response Time | Gray to Gray | T _{GTG_AVR} | - | 14 | 25 | ms | 4 | | Color Gamut (CIE 1 | 931) | sRGB | 95 | 100.0 | - | % | | | | Dad | Rx | | 0.674 | | | | | | Red | Ry | Тур | 0.314 | Тур | | | | | Green | Gx | | 0.285 | | | | | Color Coordinates | | Gy | -0.03 | 0.650 | +0.03 | | | | [CIE 1931] <i>(By PR650)</i> | Dl | Bx | | 0.144 | | | | | (2) 111000) | Blue | Ву | | 0.057 | | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Wx | Тур | 0.313 | Тур | | | | | White | Wy | -0.025 | 0.329 | +0.025 | | | | Color Temperature | • | - | - | 6500 | _ | K | | | Viewing Angle | Horizontal | θ_{H} | 170 | 178 | - | _ | _ | | (CR>10, General) | Vertical | θ_{V} | 170 | 178 | - | Degree | 5 | | Gray Scale | , | - | | 2.2 | | | 6 | #### Notes: Contrast Ratio(CR) is defined mathematically as: (By PR880) It is measured at center point(1) - 2) **Surface Luminance(LwH)** is the luminance value at center 1 point(1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG.4-1. *(By PR880)* - 3) The Variation in Surface Luminance , δ_{WHITE} is defined as: (By PR880) $$\delta_{\text{ WHITE}} = \begin{array}{c} \text{Minimum(LP1,LP2,, LP25)} \\ \cdots \\ \text{Maximum(LP1,LP2,, LP25)} \end{array}$$ Where L1 to L25 are the luminance with all pixels displaying white at 25 locations. For more information see FIG.4-2. #### <Measuring Point For Luminance Variation> #### <Measuring Point For Surface Luminance> @ H,V: Active Area A: H/2 B: V/2 C: H/10 D: V/10 FIG.4-2 Measure Point for Luminance Ver. 1.1 May. 15. 2024 24 / 34 #### Notes: - 4) The Gray To Gray Response Time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray ". (By RD805) - Gray step: 5 Step - $T_{\text{GTG_AVR}}$ is the total average time at rising time and falling time for "Gray To Gray ". For the GTG measurement, the sampling rate of oscilloscope is 500k/s. Table 4-2. GTG Gray | Cupy to Cupy | | Rising Time | | | | | | | |--------------|--------------|-------------|------|------|-----|----|--|--| | Gray to G | Gray to Gray | | G191 | G127 | G63 | G0 | | | | | G255 | | | | | | | | | | G191 | | | | | | | | | Falling Time | G127 | | | | | | | | | | G63 | | | | | | | | | | G0 | | | | | | | | Response Time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)". **FIG.4-3 Response Time** #### Notes: 5) **Viewing Angle** is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.4-4. **(By PR880)** **FIG.4-4 Viewing Angle** 6) **Gamma Value** is approximately 2.2. For more information see below table. **Table 4-3. Gray Scale Specification** | Gray Level | Relative Luminance [%](Typ) | |------------|-----------------------------| | 0 | 0.10 | | 15 | 0.30 | | 31 | 1.08 | | 47 | 2.50 | | 63 | 4.72 | | 79 | 7.70 | | 95 | 11.49 | | 111 | 16.20 | | 127 | 21.66 | | 143 | 28.20 | | 159 | 35.45 | | 175 | 43.8 | | 191 | 53.00 | | 207 | 63.30 | | 223 | 74.48 | | 239 | 86.80 | | 255 | 100 | Ver. 1.1 May. 15. 2024 26 / 34 #### 5. Mechanical Characteristics The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD. | | Horizontal | 535.0 mm | | | |---------------------|----------------------------------------------------------|-----------|--|--| | Outline Dimension | Vertical | 309.36 mm | | | | | Depth | 11.31 mm | | | | 5 14 | Horizontal | - | | | | Bezel Area | Vertical | - | | | | Active Dienley Area | Horizontal | 527.04 mm | | | | Active Display Area | Vertical | 296.46 mm | | | | Weight | Typ: 1,870g, Max: 1,970g | | | | | Surface Treatment | Anti-Glare treatment of the front polarizer(Haze25%, 3H) | | | | Note: Please refer to a mechanical drawing in terms of tolerance at the next page. ^{Outline dimensions (horizontal, vertical and outside depth) are measured by using vernier calipers. The inside depth dimensions are measured by using height gauge, when LCM is put face down onto a} flat surface. #### <Front View> - Notes 1. I/F connector specification: IS100-L300-C23(Manufactured by UJU) - 2. LED connector specification: 10035WS-H06D(HF) manufactured by Yeonho or equivalent - 3. Torque of user hole: 3.0~6.0kgf-cm. #### 4-2. Tilt Specifications | Position | Тур. | Tolerance | Range | |---------------|------|-----------|-------------| | (1),(2)_Left | -0.1 | ± 0.3 | -0.4 ~ +0.2 | | (3),(4)_Up | -0.1 | ± 0.3 | -0.4 ~ +0.2 | | (5),(6)_Right | -0.1 | ± 0.3 | -0.4 ~ +0.2 | - 5. Unspecified tolerances to be $\pm~0.5$ - 6. The LCM warp(warpage) is less than 1.0 on the surface plate 7. The COF area(hatching area) is weak & sensitive, so please don't press the COF area - 8. Undefined height should follow the 3D modeling data. < Measurement Point: (1)~(6) > #### <Rear View> #### LGD Highly recommendation: System chassis or frame should be designed to keep the IPS Panel flat as it is vulnerable to panel light-leakage caused by deformation. ### 6. Reliability #### **Environment test condition** | No | Test Item | Condition | Notes | |----|----------------------------------------------------------|-------------------------------------------------------|-------| | 1 | High temperature storage test | T _a = 60°C, 240h | 1 | | 2 | Low temperature storage test | T _a = -20°C, 240h | 1 | | 3 | High temperature operation test | T _a = 50°C, 50%RH, 240h | 1 | | 4 | Low temperature operation test | T _a = 0°C, 240h | 1 | | 5 | Humidity condition operation | T _a = 40°C, 90%RH | 1 | | 6 | Altitude Operating Storage / Shipment | 0 - 10,000 feet (3,048m)
0 - 40,000 feet (12,192m) | | | 7 | Maximum storage humidity for 4 corner light leakage Mura | Max 70%RH, T _a = 40°C | | Note 1) Result Evaluation Criteria: TFT-LCD panels test should take place after cooling enough at room temperature. In the standard condition, there should be no particular problems that may affect the display function. ^{*} T_a= Ambient Temperature ^{*} Guarantee 30Khrs on static office circumstances (Room Temp. & Room Humidity) only for the Panel peel off at tilt (-35°~+80°) and pivot (-180°~+180°) usage. #### 7. International Standards #### 7-1. Safety - a) IEC 62368-1, The International Electro-technical Commission(IEC). Audio/video, Information and Communication Technology Equipment Safety Safety Requirements. - b) EN 62368-1, European Committee for Electro-technical Standardization (CENELEC) Audio/video, Information and Communication Technology Equipment Safety Requirements c) UL 62368-1, UL LLC. - Audio/video, Information and Communication Technology Equipment Safety Requirements - d) CAN/CSA C22.2 No.62368-1, Canadian Standards Association (CSA). Audio/video, Information and Communication Technology Equipment Safety Requirements - e) IEC 60950-1, The International Electro technical Commission (IEC). Information Technology Equipment - Safety - Part 1 : General Requirements #### 7-2. Environment a) RoHS, Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 ### 8. Packing ### 8-1. Designation of Lot Mark a) Lot mark | Α | В | С | D | Е | F | G | Н | I | J | K | L | М | |---|---|---|---|---|---|---|---|---|---|---|---|---| |---|---|---|---|---|---|---|---|---|---|---|---|---| A,B,C: SIZE(INCH) D: YEAR E: MONTH $F \sim M$: SERIAL NO. #### Note #### 1. YEAR | Year | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | |------|------|------|------|------|------|------|------|------|------|------| | Mark | К | L | М | N | Р | R | S | Т | U | V | #### 2. MONTH | Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Mark | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | #### b) Location of lot mark Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice. ### 8-2. Packing Form a) Package Quantity In One Box: 10 eaPackage Quantity In One Pallet: 120 eab) Packing Size: 635 mm x 370 mm x 430 mm c) Pallet ASS'Y Size: 1140 mm x 1300 mm x 972 mm * LCM Direction(Insert to Bottom Packing): COF Down | No. | Description | Material | | | |------------|----------------|------------|--|--| | (a) | LCM | - | | | | (b) | AL-Bag | AL | | | | © | Packing,Bottom | EPS | | | | (d) | Packing,Top | EPS | | | | (0) | Вох | Paper(SW) | | | | (f) | Pallet | Plywood | | | | 9 | Tape | OPP | | | | h | BAND | PP | | | | (i) | LABEL | YUPO PAPER | | | | <u>(j)</u> | Wrap | LDPE | | | | (K) | Paper angle | Paper | | | #### 9. Precautions Please pay attention to the followings when you use this TFT LCD module. #### 9-1. Mounting Precautions - 1) You must mount a module using holes arranged in rear side. - 2) You should consider the mounting structure so that uneven force(ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - 3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - 4) You should adopt radiation structure to satisfy the temperature specification. - 5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - 6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.) - 7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. - 8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - 9) Do not open the case because inside circuits do not have sufficient strength. - 10) System frame should not have an interference with panel which can cause LC Leakage/Panel Crack due to the contraction of system frame at low temperature condition or panel damage by any other circumstances. ### 9-2. Operating Precautions - 1) Response time depends on the temperature. (In lower temperature, it becomes longer.) - 2) Brightness depends on the temperature.(In higher temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer. - 3) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - 4) When fixed patterns are displayed for a long time, remnant image is likely to occur. - 5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference. - 6) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly. - 7) A screw which is fastened up the steels should be a machine screw.(if not, it causes metallic foreign material and deal LCM a fatal blow) - 8) Please do not set LCD on its edge. - 9) When LCMs are used for public display, defects such as Yogore & image sticking can not be guaranteed. - 10) LCMs cannot support "Interlaced Scan Method" - 11) When this reverse model is used as a forward-type model (PCB on top side) or a Portrait-type mode at storage and operation, LGD can not guarantee any defects of LCM. - 12) Please conduct image sticking test after 2-hour aging with Rolling Pattern at normal temperature.(25~40°C) #### 9-3. Electrostatic Discharge Control Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. ### 9-4. Precautions For Strong Light and Hazardous Materials Exposure Strong light exposure causes degradation of polarizer and color filter. The LCM should be avoided direct contact with hazardous materials such as sulfur, acetic acid, chlorine, etc. These materials may cause chemical reaction such as sulfurization, corrosion, discoloration, etc. #### 9-5. Storage When storing modules as spares for a long time, the following precautions are necessary. - 1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity. - The polarizer surface should not come in contact with any other object.It is recommended that they be stored in the container in which they were shipped. #### 9-6. Handling Precautions For Protection Film - The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc. - 2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off. - 3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane. ### **# APPENDIX** #### ■ ID Label of LCM #### ■ Serial Label #### Box Label | LM23 | SSC1 | | | | | | |---------------|-----------|---------------|--|--|--|--| | PN: N8492 | | | | | | | | 10 PCS | LOT/MM-DD | | | | | | | MADE IN | CHINA | RoHS Verified | | | | | | | | | | | | | #### ■ Pallet Label | LM23 | SSC1 | | | | | |----------------|-----------|---------------|--|--|--| | PN: N8492 | 9-001 | | | | | | 120 PCS | LOT/MM-DD | | | | | | MADE IN | CHINA | RoHS Verified | | | | | | | | | | | Ver. 1.1 May. 15. 2024 36 / 34