

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: G170ECE SUFFIX: LE1

Customer: ALL				
APPROVED BY	SIGNATURE			
Name / Title Note				
Please return 1 copy for you signature and comments.	r confirmation with your			

Approved By	Checked By	Prepared By
林秋森	吳承旻	王啟瑜

Version 2.0 13 October 2023 1 / 40

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURE	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2 ELECTRICAL ABSOLUTE RATINGS	8
2.2.1 TFT LCD MODULE	8
2.2.2 BACKLIGHT UNIT	
3. ELECTRICAL CHARACTERISTICS	9
3.1 TFT LCD MODULE	9
3.2 BACKLIGHT UNIT	
4. BLOCK DIAGRAM	
4.1 TFT LCD MODULE	
5. INPUT TERMINAL PIN ASSIGNMENT	
5.1 TFT LCD MODULE	
5.2 BACKLIGHT UNIT (Connector pin)	
5.3 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING	
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6.2 POWER ON/OFF SEQUENCE	
6.3 SCANNING DIRECTION	
7. OPTICAL CHARACTERISTICS	
7.1 TEST CONDITIONS	
7.2 OPTICAL SPECIFICATIONS	
8. RELIABILITY TEST CRITERIA	
9. PACKAGING	
9.1 PACKING SPECIFICATIONS	
9.2 PACKING METHOD	
9.3 UN-PACKING METHOD	
10. DEFINITION OF LABELS	
10.1 INX MODULE LABEL	
11. PRECAUTIONS	
11.1 ASSEMBLY AND HANDLING PRECAUTIONS	
11.2 STORAGE PRECAUTIONS	28

H1 H370 B	
11.3 OTHER PRECAUTIONS	29
12. MECHANICAL CHARACTERISTICS	30
Appendix. SYSTEM COVER DESIGN NOTICE	

Version 2.0 13 October 2023 3 / 40

REVISION HISTORY

Version	Date	Page	Description
Ver 1.0	21 Jul. 2023	All	Preliminary Specification was first issued.
Ver 2.0	07 Oct. 2023	11,16, 27	Update BLOCK DIAGRAM, Timing diagram of LVDS, label

Version 2.0 13 October 2023 4 / 40

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G170ECE-LE1 is a 17.0" TFT Liquid Crystal Display IAV module with LED Backlight units and 30 pins LVDS interface. This module supports 1280 X 1024 SXGA mode and can display 16.7M colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 17.0" SXGA LCD panel and the LED driving device for Backlight is not built in PCBA.

1.2 FEATURE

- SXGA (1280 x 1024 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 2pixel/clock
- PSWG (Panel Standardization Working Group)
- RoHS compliance

1.3 APPLICATION

- -TFT LCD Monitor
- Factory Application

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	337.92(H) x 270.336(V) (17.0" diagonal)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1280 x R.G.B x 1024	pixel	-
Pixel Pitch	0.264(H) x 0.264(W)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16.7M	color	-
Display Mode	Normally Black	-	-
Surface Treatment	Hard Coating (3H), Anti-Glare	-	-
Module Power Consumption	Total 7.2 W (Typ.) @ Cell: 1.7 W (Typ.) + BLU:5.5 (Typ.)	W	Тур.

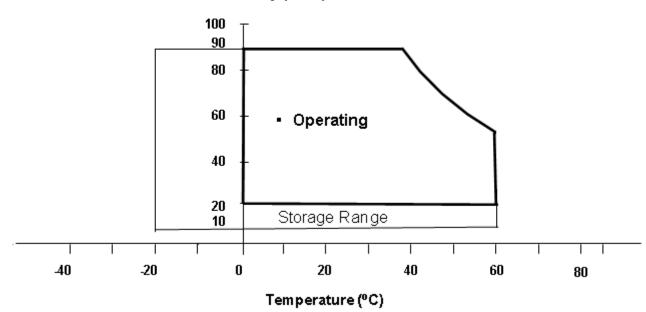
1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min. Typ. M		Max.	Unit	Note
	Horizontal(H)	358.0	358.5	359	mm	
Module Size	Vertical(V)	296.0	296.5	297.0	mm	(1)
	Depth(D)	11.7	12.2	12.7	mm	
Dozel Area	Horizontal	341.62	341.92	342.22	mm	-
Bezel Area	Vertical	274.04	274.34	274.64	mm	
A ativa A raa	Horizontal	-	337.92	-	mm	
Active Area	Vertical	-	270.336	-	mm	
We	ight	-	1285	1350	g	

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT


lto m	Cumbal	Va	lue	l loit	Note	
Item	Symbol	Min.	Max.	Unit		
Operating Ambient Temperature	T _{OP}	0	+60	$^{\circ}\!\mathbb{C}$	(1)(2)	
Storage Temperature	T _{ST}	-20	+60	$^{\circ}\!\mathbb{C}$	(1)(2)	

Note (1)

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) Panel surface temperature should be 0° C min. and 60° C max under Vcc=5.0V, fr =60Hz, typical LED string current, 25° C ambient temperature, and no humidity control . Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 60° C.(Panel surface temperature.)

Version 2.0 13 October 2023 7 / 40

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

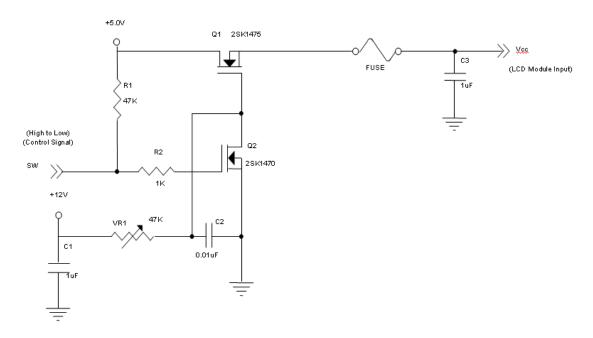
Item	Symbol	Value		Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	VCC	-0.3	6	V	(1)	
Logic Input Voltage	Vin	-0.3	3.6	V	(1)	

2.2.2 BACKLIGHT UNIT

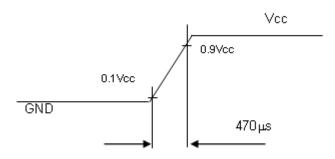
Item	Symbol	Value			Unit	Note	
item	Symbol	Min.	Тур	Max.	Offic	Note	
LED Forward Current Per Input Pin	I _F	26.1	29	31.9	mA	(1), (2)	
LED Reverse Voltage Per Input Pin	V _R	42.5	47.3	56	V	Duty=100%	
LED Pulse Forward Current Per Input Pin	lР			240	mA	(1), (2) Pulse Width≦10msec. and Duty≦10%	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 [∞] (Refer to 3.2 for further information).

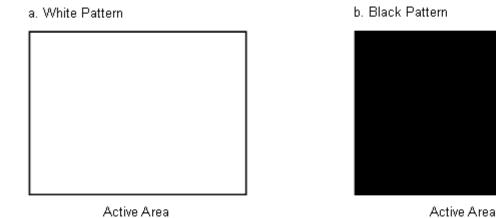

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

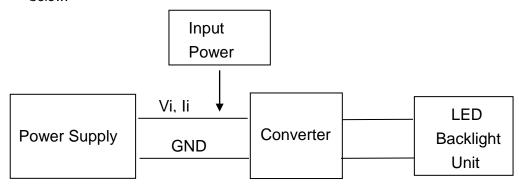

Parameter	Cumbal		Value	Unit	Note		
Parameter	Symbol	Min.	Тур.	Max.	Offic	note	
Power Supply Vo	Itage	Vcc	4.5	5.0	5.5	V	-
Ripple Voltag	е	V_{RP}	ı	•	300	mVp-p	-
Inrush Current		I _{INRUSH}	ı	ı	2.0	Α	(2)
Dawar Cumply Current	White	loo	ı	320	380	mA	(3)a
Power Supply Current	Black	lcc	-	335	395	mA	(3)b
LVDS differential inpu	ıt voltage	V _{id}	200	-	600	mV	-
LVDS common input	voltage	Vic	1.0	1.2	1.4	V	-
Differential Input Voltage for	"H" Level	ViH	1	-	100	mV	-
LVDS Receiver Threshold	"L" Level	VıL	-100	-	-	mV	-
Terminating Res	istor	R⊤	-	100	-	Ohm	-

Note (1)The module should be always operated within above ranges.

Note (2)Measurement Conditions:


Vcc rising time is 470µs

Version 2.0 13 October 2023 9 / 40

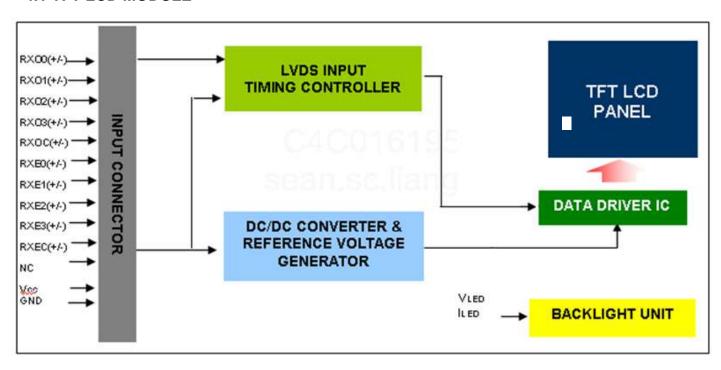

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

3.2 BACKLIGHT UNIT

Parameter	Symbol		Value	Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Ullit	Note
LED Light Bar Input Voltage Per Input Pin	VPIN	42.5	47.3	56	V	(1), Duty=100%, IPIN=29mA
LED Light Bar Current Per Input Pin	IPIN	26.1	29	31.9	mA	(1), (2) Duty=100%
LED Life Time	LLED	50000	-	-	Hrs	(3)
Power Consumption (Output power)	PBL	5.0	5.5	7.1	W	(1) Duty=100%, IPIN=29mA

Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multi-meter as shown below:

Note (2) $PBL = IPIN \times VPIN \times input pins$


Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 \pm 2 $^{\circ}$ C and I= 29 mA (per chip) until the brightness becomes \leq 50% of its original value.

Note (4) The module must be operated with constant driving current.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	GND
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	GND
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	GND
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3(even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	GND
25	NC	For LCD internal use only, Do not connect
26	NC	For LCD internal use only, Do not connect
27	NC	For LCD internal use only, Do not connect
28	Vcc	+5.0V power supply
29	Vcc	+5.0V power supply
30	Vcc	+5.0V power supply

Note (1) Connector Part No.: P-TWO 187098-30091 or FCN WF13-428-3033 or equivalent.

Note (2) User's connector Part No:JAE FI-X30H or JAE FI-X30HL or equivalent.

Note (3) The first pixel is odd.

Note (4) Input signal of even and odd clock should be the same timing.

5.2 BACKLIGHT UNIT (Connector pin)

Pin	Description
1	Cathode of LED string 1
2	Cathode of LED string 2
3	VLED
4	VLED
5	Cathode of LED string 3
6	Cathode of LED string 4

Note (1) Connector Part No.: CviLux CI1406M1VL0-NH or ACES 50429-0064N-001 or equivalent.

Note (2) User's connector Part No.: FCN WF1300106-B or CviLux Cl1406SL000-NH or equivalent and hook width must be less than 4.5mm.

5.3 COLOR DATA INPUT ASSIGNMENT

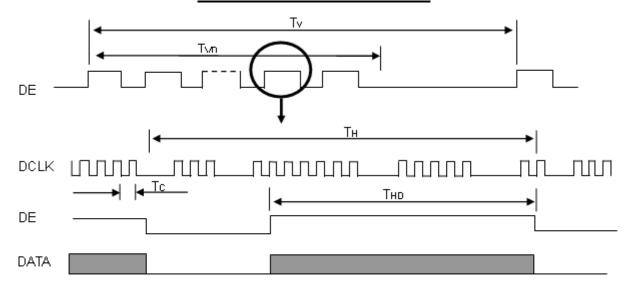
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D		Sig	nal										
	Color				Re								Gre								BI				
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2		G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1)0: Low Level Voltage, 1: High Level Voltage

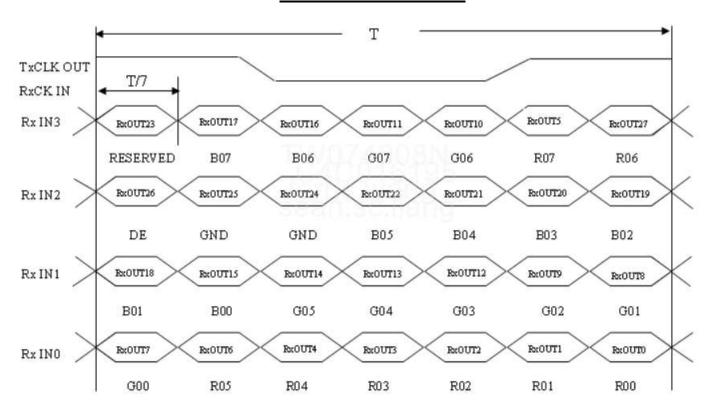
6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

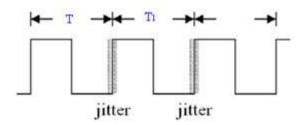

The input signal timing specifications are shown as the following table and timing diagram.

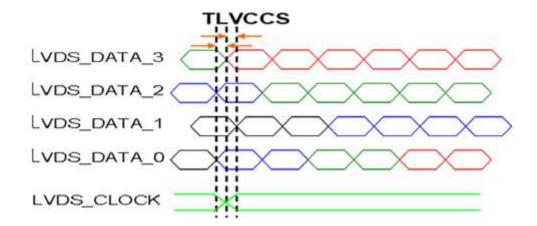
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	45	54	69.3	MHz	-
	Period	Tc	14.43	18.52	22.22	ns	-
	Input cycle to cycle jitter	T _{rcl}	-0.02*TC		0.02*TC	ns	(3)
LVDS Clock	Input Clock to data skew	TLVCCS	-0.02*TC		0.02*TC	ns	(4)
	Spread spectrum modulation range	F _{clkin_mod}	0.97*FC		1.03*FC	MHz	(5)
	Spread spectrum modulation frequency	F _{SSM}			100	KHz	(5)
	Frame Rate	Fr	50	60	75	Hz	-
Vertical Display	Total	Tv	1044	1066	1450	T_h	$Tv=T_{vd}+T_{vb}$
Term	Active Display	T_{vd}		1024		T_h	-
	Blank	T_{vb}	20	42	426	T_h	-
	Total	Th	790	844	880	Tc	$T_h = T_{hd} + T_{hb}$
Horizontal Display Term	Active Display	T _{hd}		640		Tc	-
161111	Blank	T _{hb}	150	204	240	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

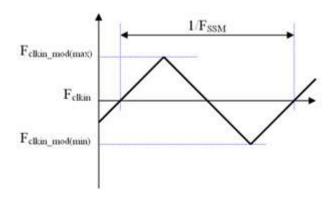

Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

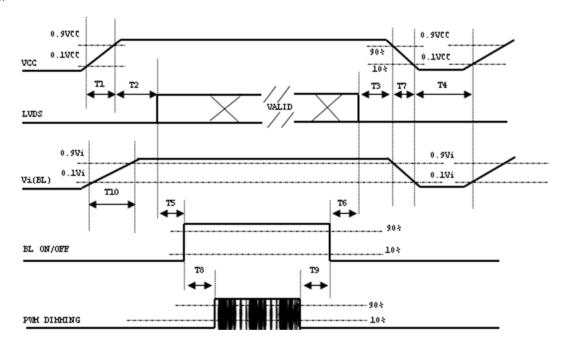



TIMING DIAGRAM of LVDS

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. $T_{rcl} = I T1 - TI$



Note (4) Input Clock to data skew is defined as below figures.



Note (5) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Version 2.0 13 October 2023 17 / 40

Doromotor		Lloito				
Parameter	Min	Тур	Max	Units		
T1	0.5	-	10	ms		
T2	0	1	50	ms		
T3	0	1	50	ms		
T4	500	1	-	ms		
T5	450	-	-	ms		
Т6	200	-	-	ms		
Т7	10	-	100	ms		
Т8	10	-	-	ms		
Т9	10	1	-	ms		
T10	20	-	50	ms		

Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec".

6.3 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

PCBA on the top side

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

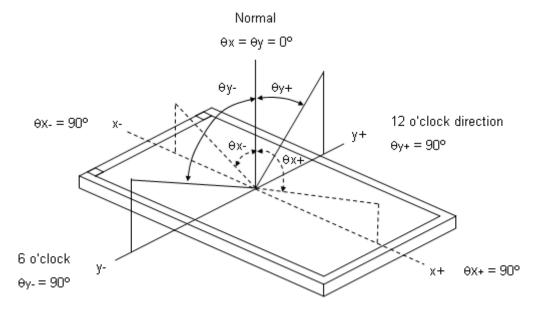
ltem	Symbol	Value	Unit				
Ambient Temperature	Ta	25±2	оС				
Ambient Humidity	Ha	50±10	%RH				
Supply Voltage	According to typical value and tolerance in						
Input Signal	"ELECTRICAL CHARACTERISTICS"						
PWM Duty Ratio	D	100	%				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Dod	Rx		0.603	0.653	0.703		
	Reu	Ry		0.603				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.323	0.373						
Color	Green	Gy	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1) (5)				
Chromaticity	Rlug	Bx θX=0°, θY =0° 0.101 0.151 0.201 By Grayscale Maximum 0.000 0.050 0.100	_	(1), (5)				
	blue	Ву	Grayscale Maximum	0.000	0.050	0.100		
	\//hito	Wx		0.263	0.313	0.363		
	vviile	Wy		0.279	0.329	0.379		
Center Lumina	Center Luminance of White			200	250	-	-	(4), (5)
Contrast	Ratio	CR		700	1000	-	-	(2), (5)
Pagnang	o Timo	TR	0V_0° 0V _0°	-	14	19	-	(2)
Respons	e mine	TF	₩=0 , ₩1 =0	-	11	16	-	(3)
White Va	White Variation		$\theta X=0^{\circ}, \ \theta Y=0^{\circ}$	75	80	-	%	(5), (6)
	Horizontal	θX+		80	89	-		
Viowing Anglo	Tionzontai	θX-	CR>10	80	89	-	Dog	(4) (5)
viewing Angle	Vertical	θΥ+	OIX≦ IU	80	89	-	Deg.	(1), (3)
	vertical	θΥ-		80	89	-		

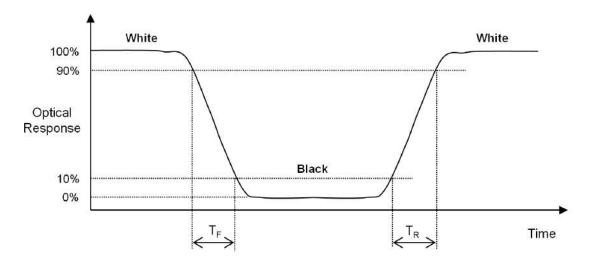
Definition:


Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63)

White: Luminance of Grayscale Maximum (All R,G,B)

Black: Luminance of grayscale 0 (All R,G,B)

Note (1)Definition of Viewing Angle (θx , θy):

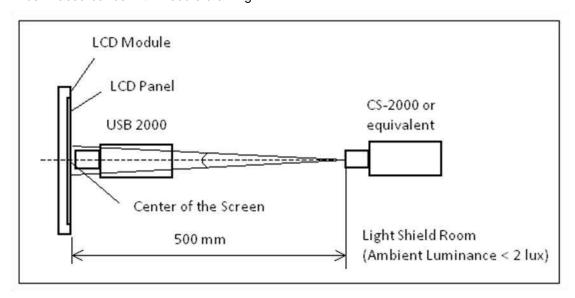


Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression at center point.

Contrast Ratio (CR) = White / Black

Note (3)Definition of Response Time (TR, TF):

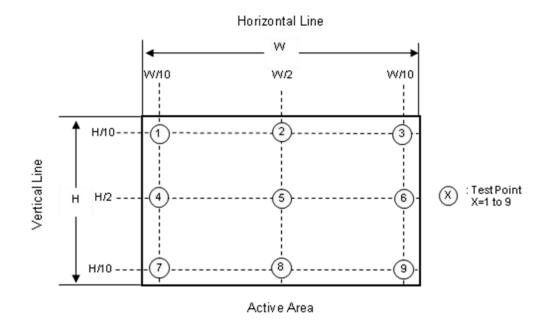


Note (4) Definition of Luminance of White (L_C):

Measure the luminance of White at center point.

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.


Note (6) Definition of White Variation (δW):

Measure the luminance of White at 9 points.

Luminance of White: L(X), where X is from 1 to 9.

$$\delta W = \frac{\text{Minimum [L(1) to L(9)]}}{\text{Maximum [L(1) to L(9)]}} \times 100\%$$

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note			
High Temperature Storage Test	60℃, 240 hours				
Low Temperature Storage Test	-20°C, 240 hours				
Thermal Shock Storage Test	-20° C, 0.5 hour \longleftrightarrow 60 $^{\circ}$ C, 0.5 hour; 100cycles, 1 hour/cycle)	(1),(2)			
High Temperature Operation Test	60℃, 240 hours				
Low Temperature Operation Test	0°ℂ, 240 hours	(4),(5)			
High Temperature & High Humidity Operation Test	50℃, RH 80%, 240 hours				
ESD Test (Operation)	150pF, 330 Ω , 1 sec/cycle Condition 1 : panel contact, ± 8 KV Condition 2 : panel non-contact ± 15 KV	(1), (4)			
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for ± X, ± Y, ± Z direction				
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 1 cycles each X, Y, Z direction				

- Note (1) There should be no condensation on the surface of panel during test,
- Note (2) Temperature of panel display surface area should be 60°C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 11 LCD modules / 1 Box
- (2) Box dimensions:475(L)x390(W)x410(H)mm
- (3) Weight: approximately: 16.25kg (11 modules per box)

9.2 PACKING METHOD

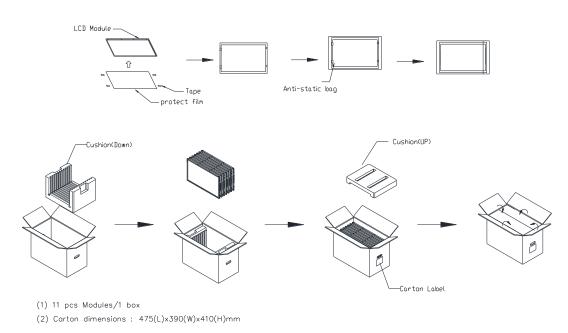


Figure. 9-1 Packing method

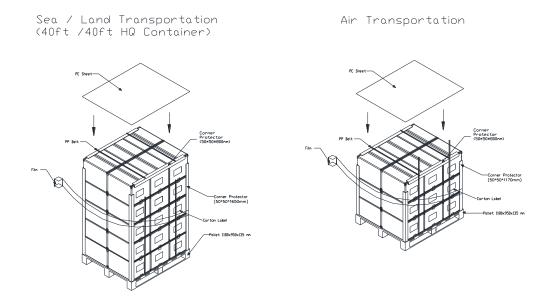
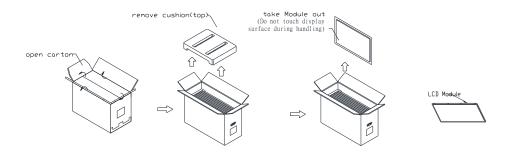
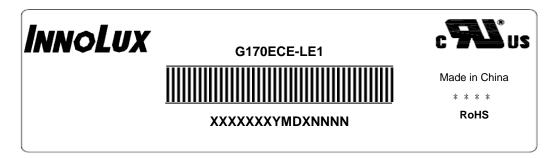


Figure. 9-2 Packing method

9.3 UN-PACKING METHOD



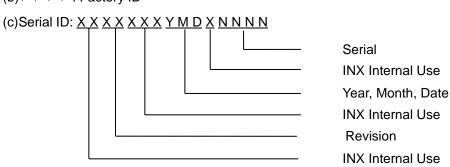

Figure. 9-3 UN-Packing method



10. DEFINITION OF LABELS

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



Note (1) Safety Compliance (UL logo) will open after C1 version.

(a)Model Name: G170ECE-LE1

(b)* * * * : Factory ID

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: $1\sim9$, $A\sim Y$, for 1^{st} to 31^{st} , exclude I , O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

INNOLUX 群創光電

PRODUCT SPECIFICATION

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

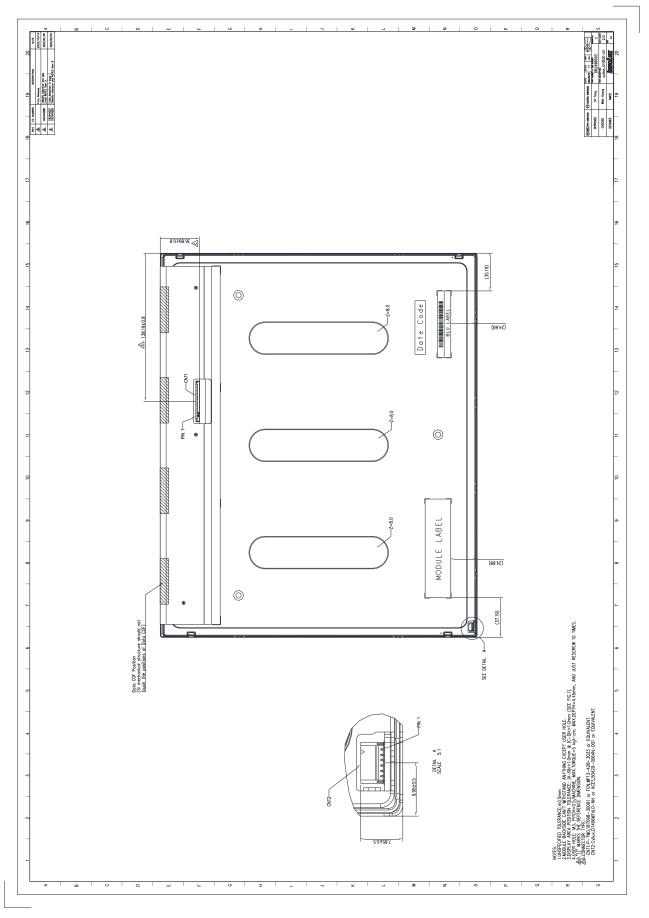
- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

11.2 STORAGE PRECAUTIONS

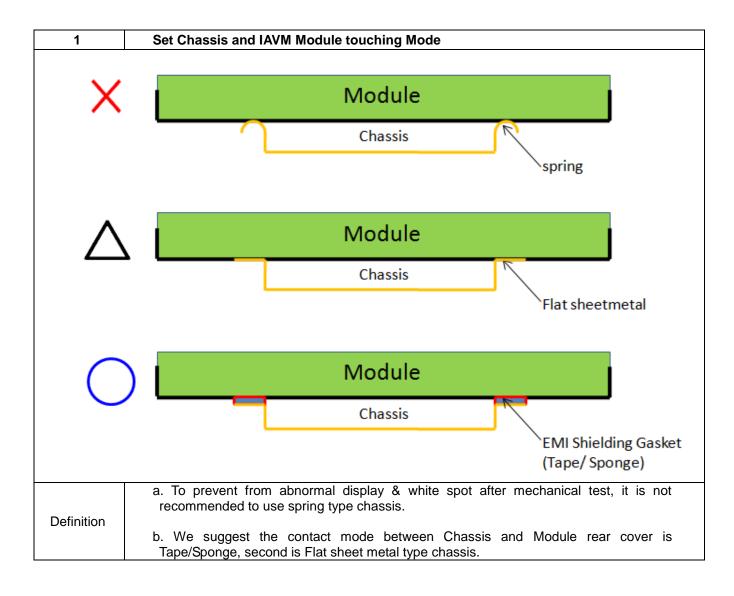
- (1) When storing for a long time, the following precautions are necessary.
 - (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
 - (b) The polarizer surface should not come in contact with any other object.
 - (c) It is recommended that they be stored in the container in which they were shipped.
 - (d) Storage condition is guaranteed under packing conditions.
 - (e)The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3)It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4)It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

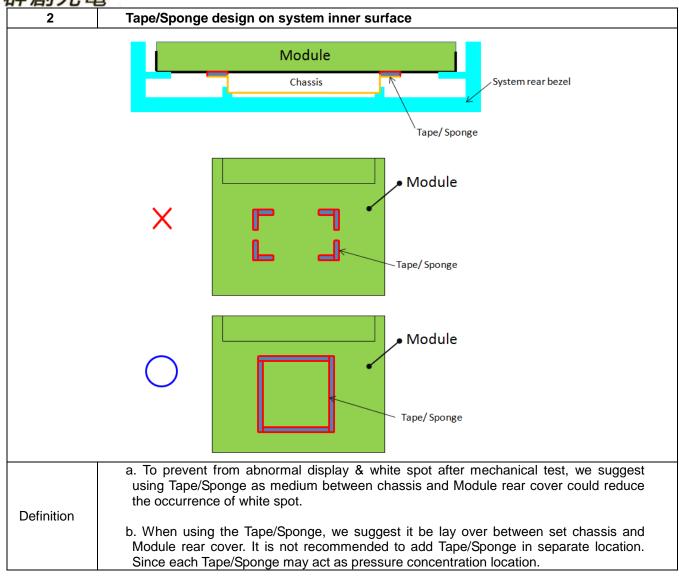
11.3 OTHER PRECAUTIONS

- (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)(Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Static information display recommended to use with moving image.
- (3) Abnormal condition just means conditions except normal condition.

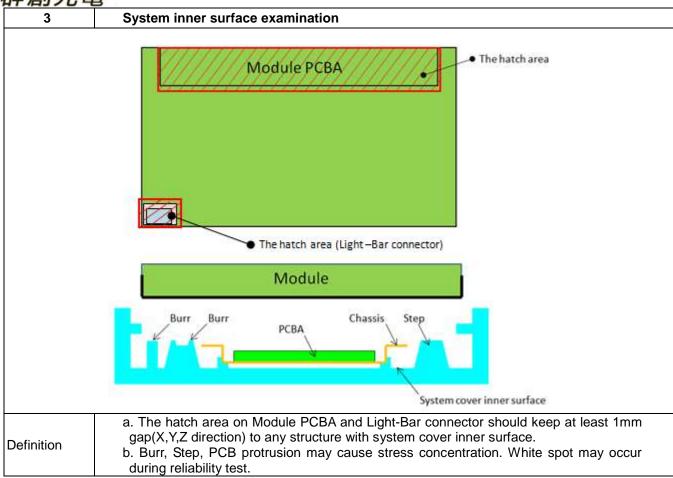


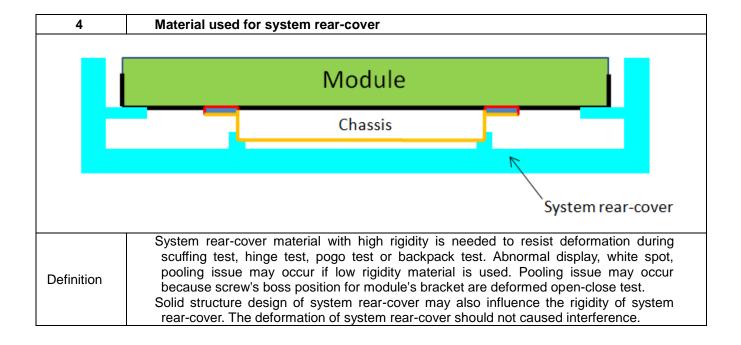
12. MECHANICAL CHARACTERISTICS

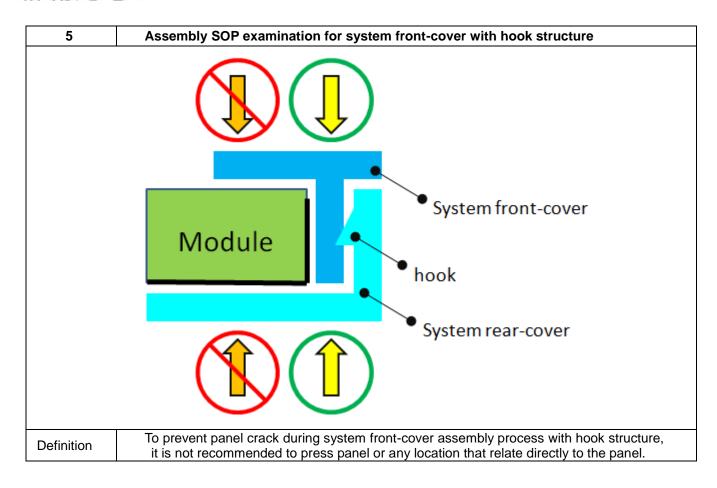


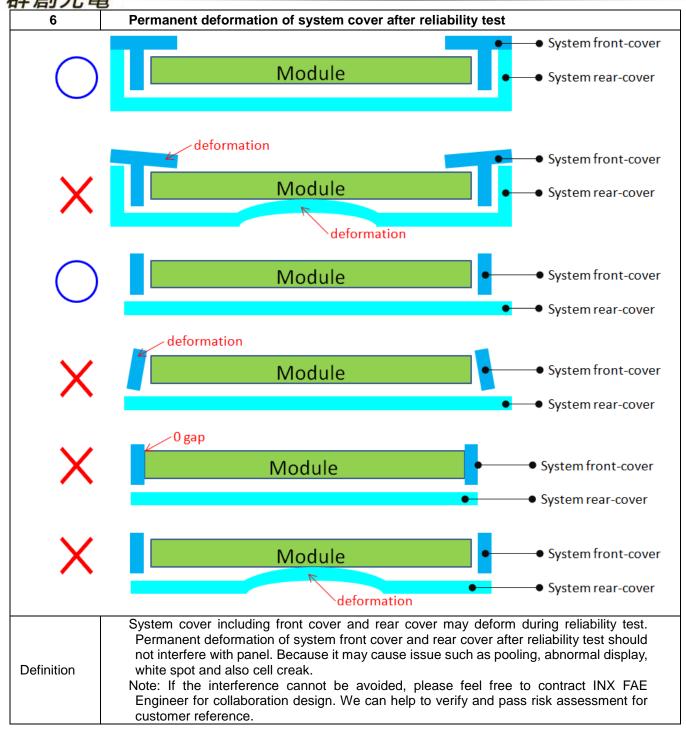

Version 2.0 13 October 2023 31 / 40

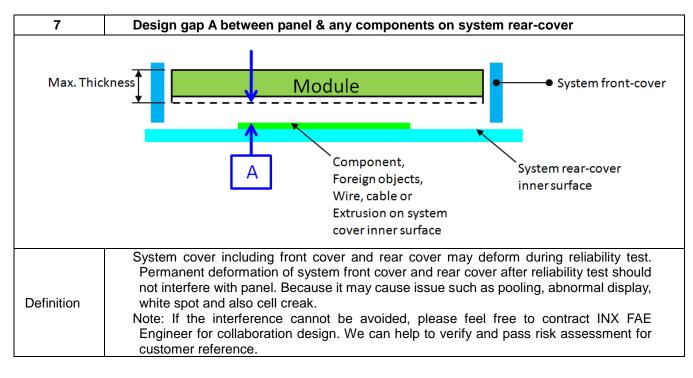
Appendix. SYSTEM COVER DESIGN NOTICE

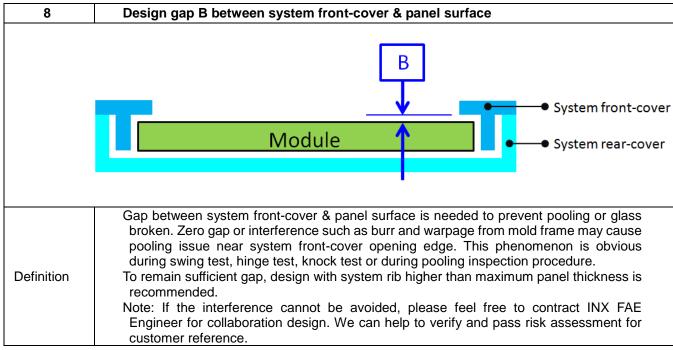




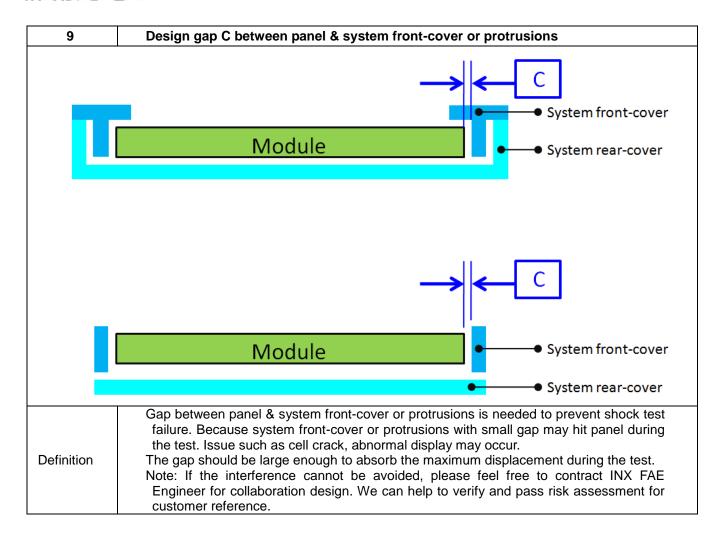

Version 2.0 13 October 2023 33 / 40

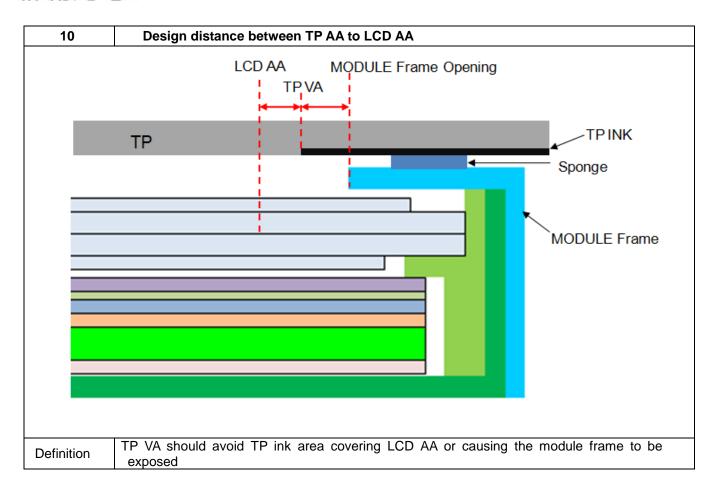


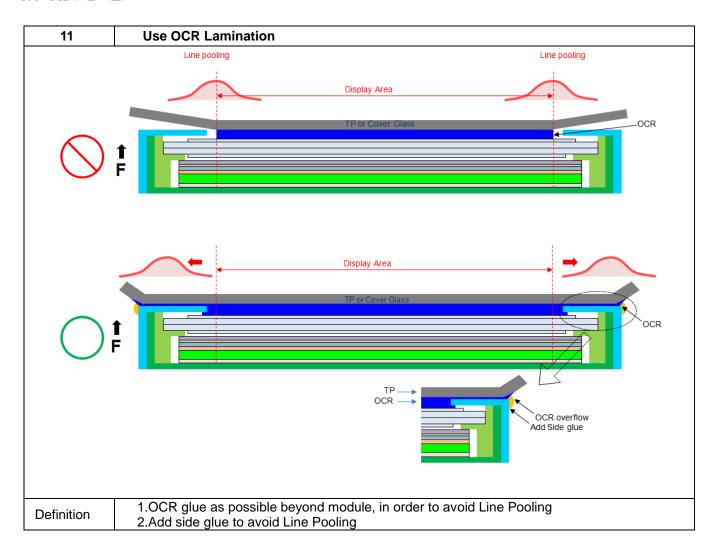

Version 2.0 13 October 2023 35 / 40



Version 2.0 13 October 2023 36 / 40




Version 2.0 13 October 2023 37 / 40



Version 2.0 13 October 2023 38 / 40

